
information, there is no alternative for model builders to
that of judging for plausibility on a case-by-case basis.

ROBERT J. SHILLER

See also adaptive expectations; behavioural economics

and game theory; certainty equivalence; prediction markets;

rational expectations.
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expected utility hypothesis
The expected utility hypothesis is the predominant
descriptive and prescriptive theory of individual choice
under conditions of risk or uncertainty.

The expected utility hypothesis of behaviour towards
risk is the hypothesis that the individual possesses
(or acts as if possessing) a ‘von Neumann–Morgenstern
utility function’ U( � ) or ‘von Neumann–Morgenstern
utility index’ {Ui} defined over some set X of alternative
possible outcomes, and when faced with alternative
risky prospects or ‘lotteries’ over these outcomes, will
choose the prospect that maximizes the expected value of
U( � ) or {Ui}. Since the outcomes could be alternative
wealth levels, multidimensional commodity bundles,
time streams of consumption, or even non-numerical
consequences (such as a trip to Paris), this approach
can be applied to a tremendous variety of situations,
and most theoretical research in the economics of uncer-
tainty, as well as virtually all applied work in the
field (for example, insurance or investment decisions) is
undertaken in the expected utility framework.

As a branch of modern consumer theory (for example,
Debreu, 1959, ch. 4), the expected utility model proceeds
by specifying a set of objects of choice and assuming that
the individual possesses a preference ordering over these
objects which may be represented by a real-valued maxi-
mand or ‘preference function’ V( � ), in the sense that one
object is preferred to another if and only if it is assigned a
higher value by this preference function. However, the
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expected utility model differs from the theory of choice
over non-stochastic commodity bundles in two impor-
tant respects. The first is that, since it is a theory of choice
under uncertainty, the objects of choice are not deter-
ministic outcomes but rather uncertain prospects. The
second difference is that, unlike in the non-stochastic
case, the expected utility model imposes a very specific
restriction on the functional form of the preference
function V( � ).

The formal representation of the objects of choice,
and hence of the expected utility preference function,
depends upon the set of possible outcomes. When the
outcome set X ¼ fx1; . . . ; xng is finite, we can represent
any probability distribution over this set by its vector
of probabilities P ¼ ðp1; . . . ; pnÞ ðwhere pi ¼ probðxiÞÞ
and the expected utility preference function takes the
form

VðPÞ ¼ Vðp1; . . . ; pnÞ 

X

Uipi.

When the outcome set consists of the real line or some
interval subset of it, probability distributions can be rep-
resented by their cumulative distribution functions F( � )
(where FðxÞ ¼ prob ð~x � xÞ), and the expected utility
preference function takes the form VðFÞ 


R

UðxÞdFðxÞ
(or
R

UðxÞf ðxÞdx when F( � ) possesses a density function
f( � )). When the outcomes are commodity bundles of the
form (z1,y, zm), cumulative distribution functions are
multivariate, and the preference function takes the form
R

. . .
R

Uðz1; . . . ; zmÞ dFðz1; . . . ; zmÞ. The expected utility
model derives its name from the fact that in each case the
preference function consists of the mathematical expec-
tation of the von Neumann–Morgenstern utility function
U( � ), U( � ,y, � ) or utility index {Ui} with respect to the
probability distribution F( � ), F( � ,y, � ) or P.

Mathematically, the hypothesis that the preference
function V( � ) takes the form of a statistical expectation is
equivalent to the condition that it be ‘linear in the prob-
abilities’, that is, either a weighted sum of the compo-
nents of P (i.e.

P

Ui pi) or else a weighted integral of the
functions F( � ) or f( � ) (

R

UðxÞdFðxÞ or
R

UðxÞf ðxÞdx).
Although this still allows for a wide variety of attitudes
towards risk depending upon the shape of the utility
function U( � ) or utility index {Ui}, the restriction that
V( � ) be linear in the probabilities is the primary empir-
ical feature of the expected utility model, and provides
the basis for many of its observable implications and
predictions.

It is important to distinguish between the preference
function V( � ) and the von Neumann–Morgenstern util-
ity function U( � ) (or index {Ui}) of an expected utility
maximizer, in particular with regard to the prevalent
though mistaken belief that expected utility preferences
are somehow ‘cardinal’ in a sense not exhibited by pref-
erences over non-stochastic commodity bundles. As with
any real-valued representation of a preference ordering,
an expected utility preference function V( � ) is ‘ordinal’

in that it may be subject to any increasing transforma-
tion without affecting the validity of the representation –
thus, the preference functions

R

UðxÞdFðxÞ and
½
R

UðxÞdFðxÞ�3 represent identical risk preferences. On
the other hand, the von Neumann–Morgenstern utility
function U( � ) is ‘cardinal’ in the sense that a different
utility function U*( � ) will generate an ordinally equiv-
alent preference function VnðFÞ 


R

UnðxÞdFðxÞ if and
only if it satisfies the cardinal relationship UnðxÞ 

a � UðxÞ þ b for some a40 (in which case VnðFÞ 

a � VðFÞ þ b. However, the same distinction holds in the
theory of preferences over non-stochastic commodity
bundles: the Cobb–Douglas preference function
a � lnðz1Þ þ b � lnðz2Þ þ g � lnðz3Þ (written here in its
additive form) can be subject to any increasing transfor-
mation and is clearly ordinal, even though a vector of
parameters (a�,b�,g�) will generate an ordinally equiv-
alent additive form an � lnðz1Þ þ bn � lnðz2Þ þ gn � lnðz3Þ
if and only if it satisfies the cardinal relationship
ðan; bn; gnÞ ¼ l � ða; b; gÞ for some l40.

In the case of a simple outcome set of the form
{x1,x2,x3}, it is possible to graphically illustrate the
‘linearity in the probabilities’ property of expected
utility preferences. Since every probability distribution
(p1,p2,p3) over these outcomes must satisfy p1 þ p2þ
p3 ¼ 1, we may represent such distributions by points
in the unit triangle in the (p1,p3) plane, with p2 given by
p2 ¼ 1� p1 � p3 (Figures 1 and 2). Since they represent
the loci of solutions to the equations

U1p1 þ U2p2 þ U3p3 ¼ U2 � ½U2 � U1� � p1

þ½U3 � U2� � p3 ¼ constant

1

p3 P

p1 10

Increasing preferences

Figure 1 Expected utility indifference curves
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for the fixed utility indices {U1,U2,U3}, the indifference
curves of an expected utility maximizer consist of parallel
straight lines in the triangle, with slope ½U2 � U1�=
½U3 � U2�, as illustrated by the solid lines in Figure 1.
Indifference curves which do not satisfy the expected
utility hypothesis (that is, are not linear in the proba-
bilities) are illustrated by the solid curves in Figure 2.

When the outcomes consist of different wealth levels
x1ox2ox3, this diagram can be used to illustrate other
possible features of an expected utility maximizer’s atti-
tudes towards risk. On the principle that more wealth is
better, it is typically postulated that any change in a dis-
tribution (p1, p2, p3) which increases p3 at the expense of
p2, increases p2 at the expense of p1, or both, will be
preferred: this property is known as ‘first-order stochastic
dominance preference’. Since such shifts of probability
mass are represented by north, west, or north-west
movements in the diagram, first-order stochastic dom-
inance preference is equivalent to the condition that
indifference curves are upward sloping, with more pre-
ferred indifference curves lying to the north-west. Alge-
braically, this is equivalent to the condition U1oU2oU3.

Another widely (though not universally) hypothesized
aspect of attitudes towards risk is that of ‘risk aversion’
(for example, Arrow, 1974, ch. 3; Pratt, 1964). To illus-
trate this property, consider the dashed lines in Figure 1,
which represent loci of solutions to the equations

x1p1 þ x2p2 þ x3p3 ¼ x2 � ½x2 � x1� � p1

þ½x3 � x2� � p3 ¼ constant

and hence may be termed ‘iso-expected value loci’. Since
north-east movements along any of these loci consist of

increasing the tail probabilities p1 and p3 at the expense
of the middle probability p2 in a manner which preserves
the mean of the distribution, they correspond to what are
termed ‘mean-preserving increases in risk’ (Rothschild
and Stiglitz, 1970; 1971). An individual is said to be ‘risk
averse’ if such increases in risk always lead to less pre-
ferred indifference curves, which is equivalent to the
graphical condition that the indifference curves be
steeper than the iso-expected value loci. Since the
slope of the latter is given by ½x2 � x1�=½x3 � x2�, this is
equivalent to the algebraic condition that ½U2 � U1�=
½x2 � x1�4½U3 � U2�=½x3 � x2�. Conversely, individuals
who prefer mean-preserving increases in risk are termed
‘risk loving’: such individuals’ indifference curves will be
flatter than the iso-expected value loci, and their utility
indices will satisfy ½U2 � U1�=½x2 � x1�o½U3 � U2�=
½x3 � x2�.

Note finally that the indifference map in Figure 1
indicates that the lottery P is indifferent to the origin,
which represents the degenerate lottery yielding x2 with
certainty. In such a case the amount x2 is said to be the
‘certainty equivalent’ of the lottery P. The fact that the
origin lies on a lower iso-expected value locus than P
reflects a general property of risk-averse preferences,
namely, that the certainty equivalent of any lottery will
always be less than its mean. (For risk lovers, the opposite
is the case.)

When the outcomes are elements of the real line, it
is possible to represent the above (as well as other)
aspects of preferences in terms of the shape of the
von Neumann–Morgenstern utility function U( � ), as seen
in Figures 3 and 4. In each figure, consider the lottery
which assigns the probabilities 2/3:1/3 to the outcome
levels x0: x00. The expected value of this lottery, x̄ ¼ 2=3�
x0 þ 1=3 � x00, lies between these two values, two-thirds of
the way towards x0. The expected utility of this lottery,
ū ¼ 2=3 � Uðx0Þ þ 1=3 � Uðx00Þ lies between U(x0) and
U(x00) on the vertical axis, two-thirds of the way towards
U(x0). The point ðx̄; ūÞ thus lies on the line segment con-
necting the points (x0, U(x0)) and (x00, U(x00)), two-thirds
of the way towards the former. In each figure, the certainty
equivalent of this lottery is given by the sure outcome c
that also yields a utility level of ū.

The property of first-order stochastic dominance
preference can be extended to the case of distributions
over the real line (Quirk and Saposnick, 1962), and it is
equivalent to the condition that U(x) be an increasing
function of x, as in Figures 3 and 4. It is also possible to
generalize the notion of a mean-preserving increase in
risk to density functions or cumulative distribution
functions (Rothschild and Stiglitz, 1970; 1971), and the
earlier algebraic condition for risk aversion generalizes to
the condition that U 00ðxÞo0 for all x, that is, that the
von Neumann–Morgenstern utility function U( � ) be
concave, as in Figure 3. As before, risk aversion implies
that the certainty equivalent of any lottery will lie below
its mean, as seen in Figure 3; the opposite is true for the

1

p3

p1 10

Increasing preferences

Figure 2 Non-expected utility indifference curves
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convex utility function of a risk lover, as in Figure 4.
Two of the earliest and most important analyses of
risk attitudes in terms of the shape of the
von Neumann–Morgenstern utility function are those
of Friedman and Savage (1948) and Markowitz (1952).

Analytics
The tremendous analytic capabilities of the expected
utility model derive largely from the work of Arrow
(1974) and Pratt (1964), who showed that the ‘degree’ of
concavity of the utility function provides a measure of an
expected utility maximizer’s ‘degree’ of risk aversion.
Formally, the Arrow–Pratt characterization of compara-
tive risk aversion is the result that the following

conditions on a pair of (increasing, twice differentiable)
von Neumann–Morgenstern utility functions Ua( � ) and
Ub( � ) are equivalent:

� Ua( � ) is a concave transformation of Ub( � ) (that
is, UaðxÞ 
 rðUbðxÞÞ for some increasing concave
function r( � )),
� �U 00aðxÞ=U 0aðxÞ � �U 00bðxÞ=U 0bðxÞ for each x,
� if ca and cb solve UaðcaÞ ¼

R

UaðxÞdFðxÞ and
UbðcbÞ ¼

R

UbðxÞdFðxÞ for some distribution F( � ),
then carcb,

and if Ua( � ) and Ub( � ) are both concave, these
conditions are in turn equivalent to:

� if r40, E½~z�4r, probð~zorÞ40, and aa and ab maximize
R

UaððI � aÞ � r þ a � zÞdFðzÞ and
R

UbððI � aÞ � rþ
a � zÞdFðzÞ respectively, then aarab.

The first two of these conditions provide equivalent
formulations of the notion that Ua( � ) is a more concave
function than Ub( � ). The curvature measure RðxÞ 

�U 00ðxÞ=U 0ðxÞ is known as the ‘Arrow–Pratt index of
(absolute) risk aversion’, and plays a key role in the analy-
tics of the expected utility model. The third condition
states that the more risk averse utility function Ua( � ) will
never assign a higher certainty equivalent to any lottery
F( � ) than will Ub( � ). The final condition pertains to the
individuals’ respective demands for risky assets. Specifi-
cally, assume that each must allocate $I between two
assets, one yielding a riskless (gross) return of r per dollar,
and the other yielding a risky return ez with a higher
expected value but with some chance of doing worse than
r. This condition says that the less risk-averse utility func-
tion Ub( � ) will generate at least as great a demand for the
risky asset as the more risk-averse utility function Ua( � ).
It is important to note that it is the equivalence of the
above concavity, certainty equivalent and asset demand
conditions which makes the Arrow-Pratt characterization
such an important result in expected utility theory. (Ross,
1981, provides an alternative, stronger, characterization of
comparative risk aversion.)

Although the applications of the expected utility
model extend to virtually all branches of economic
theory (for example, Hey, 1979), much of the flavour of
these analyses can be gleaned from Arrow’s (1974, ch. 3)
analysis of the portfolio problem of the previous para-
graph. If we rewrite ðI � aÞ � r þ a � z as I � r þ a�
ðz � rÞ, the first-order condition for this problem can
be expressed as:

Z

z � U 0ðI � r þ a � ðz � rÞÞdFðzÞ

�
Z

r � U 0ðI � r þ a � ðz � rÞÞdFðzÞ ¼ 0,

that is, the marginal expected utility of the last dollar
allocated to each asset is the same. The second-order

U (x′)

c x″x′ –x

U(x″)

–u

U (.)

Figure 3 Von Neumann-Morgenstern utility function of a risk

averse individual

U(. )
U(x″)

U (x ′)

–u

c x″x′ –x

Figure 4 Von Neumann–Morgenstern utility function of a risk

loving individual
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condition can be written as:
Z

ðz � rÞ2 � U 000ðI � r þ a � ðz � rÞÞdFðzÞo0

and is ensured by the property of risk aversion (i.e.
U 00( � )o0).

As usual, we may differentiate the first-order condition
to obtain the effect of a change in some parameter, say
initial wealth I, on the optimal level of investment in the
risky asset (the optimal value of a). Differentiating the
first-order condition (including a) with respect to I,
solving for da /dI, and invoking the second-order con-
dition and the positivity of r yields that this derivative
possesses the same sign as:

Z

ðz � rÞ � U 00ðI � r þ a � ðz � rÞÞdFðzÞ.

Substituting U 00ðxÞ 
 �RðxÞ � U 0ðxÞ and subtracting
R(I � r) times the first-order condition yields that this
expression is equal to:

�
Z

ðz � rÞ � ½RðI � r þ a � ðz � rÞÞ

� RðI � rÞ� � U 0ðI � r þ a � ðz � rÞÞdFðzÞ.

On the assumption that a is positive and R( � )
is monotonic, the expression ðz � rÞ � ½RðI � r þ a�
ðz � rÞÞ � RðI � rÞ� will possess the same sign as R0( � ).
This implies that the derivative da/dI will be positive
(negative) whenever the Arrow–Pratt index R(x) is a
decreasing (increasing) function of the individual’s wealth
level x. In other words, an increase in initial wealth will
always increase (decrease) demand for the risky asset if
and only if U( � ) exhibits decreasing (increasing) absolute
risk aversion in wealth. Further examples of the analytics
of the expected utility model may be found in the above
references, as well as the surveys of Hirshleifer and Riley
(1979), Lippman and McCall (1981), Machina (1983) and
Karni and Schmeidler (1991).

Axiomatic development
Although there exist dozens of formal axiomatizations of
the expected utility model, most proceed by specifying an
outcome space and postulating that the individual’s pref-
erences over probability distributions on this outcome
space satisfy the following four axioms: completeness,
transitivity, continuity and the Independence Axiom.
Although it is beyond the scope of this entry to provide a
rigorous derivation of the expected utility model in its
most general setting, it is possible to illustrate the mean-
ing of the axioms and sketch a proof of the expected
utility representation theorem in the simple case of a
finite outcome set {x1,y, xn}.

Recall that in such a case the objects of choice consist of
probability distributions P ¼ ðp1; . . . ; pnÞ over {x1,y,xn},

so that the following axioms refer to the individuals’ weak
preference relation k over these prospects, where Pn

kP
is read ‘P� is weakly preferred (that is, preferred
or indifferent) to P’ (the associated strict preference
relation � and indifference relation � are defined in the
usual manner):

� Completeness: For any two distributions P and P�,
either Pn

kP, PkPn, or both.
� Transitivity: If Pnn

kPn and Pn
kP, then Pnn

kP.
� Mixture continuity: If Pnn

kPn
kP, then there exists

some l 2 ½0; 1� such that Pn � l � Pnn þ ð1� lÞ � P.
� Independence: For any two distributions P and P�,

Pn
kP if and only if l � Pn þ ð1� lÞ � Pnn

kl � P þ
ð1� lÞ � Pnn for all l 2 ð0; 1� and all P��

where l � P þ ð1� lÞ � Pnn denotes the l : ð1� lÞ ‘prob-
ability mixture’ of P and P��, that is, the lottery with prob-
abilities ðl � p1 þ ð1� lÞ � pnn

1 ; . . . ; l � pn þ ð1� lÞ� pnn
n Þ.

The completeness and transitivity axioms are analo-
gous to their counterparts in standard consumer
theory. Mixture continuity states that if the lottery P��

is weakly preferred to P� and P� is weakly preferred to P,
then exists some probability mixture of the most and
least preferred lotteries which is indifferent to the inter-
mediate one.

As in standard consumer theory, completeness, tran-
sitivity and continuity serve to establish the existence of a
real-valued preference function V(p1,y, pn) which rep-
resents the relation k, in the sense that Pn

kP if and
only if Vðpn

1 ; . . . ; pn
nÞ � Vðp1; . . . ; pnÞ. It is the Inde-

pendence Axiom which gives the theory its primary
empirical content by implying that k can be represented
by a linear preference function of the form
Vðp1; . . . ; pnÞ 


P

Uipi. To see the meaning of this
axiom, assume that individuals are always indifferent
between a two-stage compound lottery and its probabilis-
tically equivalent single-stage lottery, and that P� happens
to be weakly preferred to P. In that case, the choice bet-
ween the mixtures l � Pn þ ð1� lÞ � Pnn and l � Pþ
ð1� lÞ � Pnn is equivalent to being presented with a coin
that has a ð1� lÞ chance of landing tails (in which case
the prize will be P��) and being asked before the flip
whether one would rather win P� or P in the event of a
head. The normative argument for the Independence
Axiom is that either the coin will land tails, in which case
the choice won’t have mattered, or it will land heads, in
which case one is ‘in effect’ facing a choice between P�

and P and one ‘ought’ to have the same preferences as
before. Note finally that the above statement of the axiom
in terms of the weak preference relation k also implies
its counterparts in terms of strict preference and
indifference.

In the following sketch of the expected utility repre-
sentation theorem, expressions such as ‘xikxj’ should be
read as saying that the individual weakly prefers the
degenerate lottery yielding xi with certainty to that
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yielding xj with certainty, and ‘l � xi þ ð1� lÞ � xj’ will be
used to denote the l : ð1� lÞ probability mixture of
these two degenerate lotteries.

The first step in the proof is to define the von
Neumann–Morgenstern utility index {Ui} and the
expected utility preference function V( � ). Without loss
of generality, we may order the outcomes so that
xnkxn�1k . . .kx2kx1. Since xnkxikx1 for each
outcome xi, mixture continuity implies that there exist
scalars fUig � ½0; 1� such that xi � Ui � xn þ ð1� UiÞ �
x1 for each i (which implies U1 ¼ 0 and Un ¼ 1). Given
this, define VðPÞ ¼

P

Uipi for each P.
The second step is to show that each lottery P ¼

ðp1; . . . ; pnÞ is indifferent to the mixture l � xnþ
ð1� lÞ � x1 where l ¼

P

Uipi. Since (p1,y,pn) can be
written as the n-component probability mixture p1 � x1þ
p2 � x2 þ . . .þ pn � xn, and each outcome xi is indifferent
to the mixture Ui � xn þ ð1� UiÞ � x1, an n-fold applica-
tion of the Independence Axiom yields that P ¼
ðp1; . . . ; pnÞ is indifferent to the mixture

p1 � ½U1 � xn þ ð1� U1Þ � x1�
þ p2 � ½U2 � xn þ ð1� U2Þ � x1�
þ . . .þ pn � ½Un � xn þ ð1� UnÞ � x1�,

which is equivalent to ð
Pn

i¼1UipiÞ � xn þ ð1�
Pn

i¼1
UipiÞ � x1.

The third step is to demonstrate that a mixture ln �
xn þ ð1� lnÞ � x1 is weakly preferred to a mixture l �
xn þ ð1� lÞ � x1 if and only if ln � l. This follows imme-
diately from the Independence Axiom and the fact that
ln � l implies that these two lotteries may be expressed as
the respective mixtures ðln � lÞ � xn þ ð1� ln þ lÞ �
Q and ðln � lÞ � x1 þ ð1� ln þ lÞ �Q, where Q is
defined as the lottery ðl=ð1� ln þ lÞÞ� xn þ ðð1� lnÞ=
ð1� ln þ lÞÞ � x1.

The completion of the proof is now simple. For
any two distributions Pn ¼ ðpn

1 ; . . . ; pn
nÞ and P ¼

ðp1; . . . ; pnÞ, transitivity and the second step imply that
Pn

kP if and only if

Xn

i¼1
Uip

n

i

� �

� xn þ 1�
Xn

i¼1
Uip

n

i

� �

� x1

k

Xn

i¼1
Uipi

� �

� xn

þ 1�
Xn

i¼1
Uipi

� �

� x1,

which by the third step is equivalent to the condition
P

Uip
n
i �

P

Uipi, or in other words, that VðPnÞ �
VðPÞ.

As mentioned, the expected utility model has been
axiomatized many times and in many contexts. The most
comprehensive accounts of the axiomatics of the model
are undoubtedly Fishburn (1982) and Kreps (1988).

Subjective expected utility
In addition to the above setting of ‘objective’ (that is,
probabilistic) uncertainty, it is possible to define expected
utility preferences under conditions of ‘subjective’ uncer-
tainty. In this case, uncertainty is represented by a set S
of mutually exclusive and exhaustive ‘states of nature,’
which can be a finite set {s1,y, sn} (as with a horse race),
a real interval ½s; s̄� 
 R1 (as with tomorrow’s tempera-
ture), or a more abstract space. The objects of choice are
then ‘acts’ að�Þ : S! X which map states to outcomes.
In the case of a finite state space, acts are usually
expressed in the form {x1 if s1;y; xn if sn}. When the state
space is infinite, finite-outcome acts can be expressed
in the form að�Þ ¼ ½x1 on E1; . . . ; xm on Em� for
some partition of S into a family of mutually exclusive
and exhaustive ‘events’ {E1,y, Em}. Except for casino
games and state lotteries, virtually all real-world uncer-
tain decisions (including all investment or insurance
decisions) are made under conditions of subjective
uncertainty.

In such a setting, the ‘subjective expected utility
hypothesis’ consists of the joint hypothesis that the indi-
vidual possesses probabilistic beliefs, as represented by
a ‘personal’ or ‘subjective’ probability measure m( � )
over the state space, and expected utility risk preferences,
as represented by a von Neumann–Morgenstern utility
function U( � ) over outcomes, and evaluates acts accord-
ing a preference function of the form Wðx1 if
s1; . . . ; xn if snÞ 


Pn
i¼1UðxiÞ � mðsiÞ, Wðx1 on E1; . . . ;

xm on EmÞ 

Pm

i¼1UðxiÞ � mðEiÞ, or more generally,
Wðað�ÞÞ 


R

UðaðsÞÞdmðsÞ. Whereas all individuals
facing a given objective prospect P ¼ ðx1; p1; . . . ; xn; pnÞ
are assumed to ‘see’ the same probabilities (p1,y,pn)
(though they may have different utility functions), indi-
viduals facing a given subjective prospect {x1 if s1;y;xn if
sn} or [x1 on E1;y;xm on Em] will generally possess
differing subjective probabilities over these states or
events, reflecting their different beliefs, past experiences,
and so on.

Researchers such as Arrow (1974), Debreu (1959,
ch. 7) and Hirshleifer (1965; 1966) have shown how the
analytics of the objective expected utility model can be
extended to both the positive and normative analysis of
decisions under subjective uncertainty. As a simple
example, consider an individual deciding whether to
purchase earthquake insurance, and if so, how much. A
simple specification of this decision involves the state
space S ¼ fs1; s2g ¼ fearthquake; no earthquakeg, the
individual’s von Neumann–Morgenstern utility of wealth
function U( � ), their subjective probabilities {m(s1),m(s2)}
(which sum to unity), and the price g of each dollar of
insurance coverage. An individual with initial wealth w
would then purchase q dollars’ worth of coverage, where
q was the solution to

max
q

Uðw � gqþ qÞ � mðs1Þ þ Uðw � gqÞ � mðs2Þ½ �
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Note that this formulation does not require that the
individual and the insurance company agree on the
likelihood of an earthquake.

As in the objective case, subjective expected utility can
be derived from axiomatic foundations. Completeness
and transitivity carry over in a straightforward way, and
continuity with respect to mixture probabilities is
replaced by continuity with respect to small changes in
the events. The existence of additive personal probabilities
is obtained by the following axiom:

Comparative likelihood: For all events A, B and outcomes
xn � x and yn � y, [x� on A; x on �A] k [x� on B; x on
�B] implies [y� on A; y on �A] k [y� on B; y on �B].

This axiom states that if the individual ‘reveals’ event
A to be at least as likely as event B by their preference for
staking the preferred outcome x� on A rather than on B,
then this likelihood ranking will hold for all other pairs
of ranked outcomes y� � y. Finally, under subjective
uncertainty the Independence Axiom is replaced by its
subjective analogue, first proposed by Savage (1954):

Sure-Thing Principle: For all events E and acts a( � ),
a�( � ), b( � ) and c( � ), [a�( � ) on E; b( � ) on �E] k [a( � )
on E; b( � ) on �E] implies [a�( � ) on E; c( � ) on �E] k

[a( � ) on E; c( � ) on �E].

where [a( � ) on E; b( � ) on �E] denotes the act yielding
outcome a(s) for all s A E and b(s) for all s A �E.

Under subjective uncertainty, an individual’s utility of
outcomes might sometimes depend upon the particular
state of nature. Given a health insurance decision with a
state space of S ¼ fs1; s2g ¼ fcancer; no cancerg, an
individual may feel a greater need for $100,000 in state
s1 than in state s2. This can be modelled by means of
a ‘state-dependent’ utility function fUð�jsÞjs 2Sg and
a ‘state-dependent expected utility’ preference function
Ŵðx1 if s1; . . . ; xn if snÞ ¼

Pn
i¼1 UðxijsiÞ � mðsiÞ or Ŵ

ðað�ÞÞ ¼
R

UðaðsÞjsÞdm ðsÞ. The analytics of state-
dependent expected utility preferences have been
extensively developed by Karni (1985).

History
The hypothesis that individuals might maximize the
expectation of ‘utility’ rather than of monetary value was
proposed independently by mathematicians Gabriel
Cramer and Daniel Bernoulli, in each case as the solu-
tion to a problem posed by Daniel’s cousin Nicholas
Bernoulli (see Bernoulli, 1738). This problem, now
known as the ‘St Petersburg Paradox’, considers the gam-
ble which offers a 1/2 chance of $1, a 1/4 chance of $2, a
1/8 chance of $4, and so on. Although the expected value
of this prospect is

ð1=2Þ � $1þ ð1=4Þ � $2þ ð1=8Þ � $4þ � � �
� � � ¼ $0:50þ $0:50þ $0:50þ � � � ¼ $N,

common sense suggests that no one would be willing to
forgo a very substantial certain payment in order to play
it. Cramer and Bernoulli proposed that, instead of using
expected value, individuals might evaluate this and other
lotteries by means of their expected ‘utility’, with utility
given by a function such as the natural logarithm or the
square root of wealth, in which case the certainty equiv-
alent of the St Petersburg gamble becomes a moderate
(and plausible) amount.

Two hundred years later, the St Petersburg paradox
was generalized by Karl Menger (1934), who noted that,
whenever the utility of wealth function was unbounded
(as with the natural logarithm or square root functions),
it would be possible to construct similar examples with
infinite expected utility and hence infinite certainty
equivalents (replace the payoffs $1, $2, $4 y in the above
example by x1, x2, x3 y, where U(xi)=2i for each i). In
light of this, von Neumann–Morgenstern utility func-
tions are typically (though not universally) postulated to
be bounded functions of wealth.

The earliest formal axiomatic treatment of the
expected utility hypothesis was developed by Frank
Ramsey (1926) as part of his theory of subjective prob-
ability, or individuals’ ‘degrees of belief ’ in the truth of
alternative propositions. Starting from the premise that
there exists an ‘ethically neutral’ proposition whose
degree of belief is 1/2, and whose validity or invalidity
is of no independent value, Ramsey proposed a set of
axioms on how the individual would be willing to stake
prizes on its truth or falsity, in a manner which allowed
for the derivation of the ‘utilities’ of these prizes. He then
used these utility values and betting preferences to deter-
mine the individual’s degrees of belief in other propo-
sitions. Perhaps because it was intended as a contribution
to the philosophy of belief rather than to the theory of
risk bearing, Ramsey’s analysis did not have the impact
among economists that it deserved.

The first axiomatization of the expected utility model
to receive widespread attention was that of John von
Neumann and Oskar Morgenstern, presented in connec-
tion with their formulation of the theory of games
(von Neumann and Morgenstern, 1944; 1947; 1953).
Although this development was recognized as a break-
through, the mistaken belief that von Neumann and
Morgenstern had somehow mathematically overthrown
the Hicks–Allen ‘ordinal revolution’ led to some confu-
sion until the difference between ‘utility’ in the von
Neumann-Morgenstern and the ordinal (that is, non-
stochastic) senses was illuminated by writers such as
Ellsberg (1954) and Baumol (1958).

Another factor which delayed the acceptance of the
theory was the lack of recognition of the role played by
the Independence Axiom, which did not explicitly appear
in the von Neumann–Morgenstern formulation. In
fact, the initial reaction of researchers such as Baumol
(1951) and Samuelson (1950) was that there was no
reason why preferences over probability distributions
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must necessarily be linear in the probabilities. However,
the independent discovery of the Independence Axiom
by Marschak (1950), Samuelson (1952) and others, and
Malinvaud’s (1952) observation that it had been implic-
itly invoked by von Neumann and Morgenstern, led to
an almost universal acceptance of the expected utility
hypothesis as both a normative and positive theory
of behaviour towards risk. This period also saw the
development of the elegant axiomatization of Herstein
and Milnor (1953) as well as Savage’s (1954) joint
axiomatization of utility and subjective probability,
which formed the basis of the state-preference approach
described above.

While the 1950s essentially saw the completion of
foundational work on the expected utility model, sub-
sequent decades saw the flowering of its analytic capa-
bilities and its application to fields such as portfolio
selection (Merton, 1969), optimal savings (Levhari and
Srinivasan, 1969; Fleming and Sheu, 1999), international
trade (Batra, 1975; Lusztig and James, 2006), environ-
mental economics (Wolfson, Kadane and Small, 1996),
medical decision-making (Meltzer, 2001) and even the
measurement of inequality (Atkinson, 1970). This move-
ment was spearheaded by the development of the
Arrow–Pratt characterization of risk aversion (see above)
and the characterization, by Rothschild–Stiglitz (1970;
1971) and others, of the notion of ‘increasing risk’. This
latter work in turn led to the development of a general
theory of ‘stochastic dominance’ (for example, Whitmore
and Findlay, 1978; Levy, 1992), which has further
expanded the analytical powers of the model.

Although the expected utility model received a
small amount of experimental testing by economists in
the early 1950s (for example, Mosteller and Nogee, 1951;
Allais, 1953) and continued to be examined by psychol-
ogists, economists’ interest in the empirical validity of
the model waned from the mid-1950s through the
mid-1970s, no doubt due to both the normative appeal
of the Independence Axiom and model’s analytical
successes. However, since the late 1970s there has been
a revival of interest in the testing of the expected utility
model; a growing body of evidence that individuals’
preferences systematically depart from linearity in the
probabilities; and the development, analysis and appli-
cation of alternative models of choice under objective
and subjective uncertainty. It is fair to say that today
the debate over the descriptive (and even normative)
validity of the expected utility hypothesis is more exten-
sive than it has been in over half a century, and the
outcome of this debate will have important implica-
tions for the direction of research in the economics of
uncertainty.

MARK J. MACHINA

See also Bernoulli, Daniel; non-expected utility theory; Ramsey,

Frank Plumpton; risk; risk aversion; Savage’s subjective

expected utility model; uncertainty; utility.
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experimental economics

But I believe that there is no philosophical highroad in
science, with epistemological signpostsywe are in a
jungle and find our way out by trial and error, building
our road behind us as we proceed. We do not find
signposts at crossroads, but our scouts erect them, to
help the rest.

––Max Born, Experiment and Theory in Physics
(1943)

y they were criticized [those studying observational
learning in a social context] for being unscientific and
performing uncontrolled experiments. In science, there’s
nothing ‘worse’ than an experiment that’s uncontrolled.

––Temple Grandin, Animals in Translation (2005,
bracketed comments added).

The subject matter of this article is rationality in science
particularly as it applies to experimental methods. In this
context ‘rationality’ is commonly used to refer
to a particular conception that Hayek (1967, p 85) has
called:

Constructivist Rationality, which, applied to individuals,
associations or organizations, involves the conscious
deliberate use of reason to analyze and prescribe actions
judged to be better than alternative feasible actions that
might be chosen; applied to institutions it involves
the deliberate design of rule systems to achieve desir-
able performance. The latter include ‘optimal design’
where the intention is to provide incentives for
agents to choose better actions than would result from
alternative arrangements.
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