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The standard theory of individual choice under un-
certainty consists of the joint hypothesis of
expected utility risk preferences and probabilistic
beliefs. Experimental work by both psychologists
and economists has uncovered systematic depart-
ures from both hypotheses, and has led to the de-
velopment of alternative, usually more general,
models.

INTRODUCTION

Decisions under uncertainty take place in two types
of settings. In settings of ‘objective uncertainty’, the
probabilities attached to the various outcomes are
specified in advance, and the objects of choice con-
sist of ‘lotteries’ of the form P = (x1,p1;...;Xn, Pu),
which yield outcomes or monetary pay-offs x; with
probability p;, where p; +...+p, = 1. Examples
include games of chance involving dice and roul-
ette wheels, as well as ordinary lotteries.

In settings of ‘subjective uncertainty’, probabil-
ities are not given, and the objects of choice consist
of ‘bets” or ‘acts’ f(-) =[x; on Ey;...; x, on E,],
which yield outcomes or pay-offs x; in event
E;, for some mutually exclusive and exhaustive
collection of events {Ej,...,E,} which can be
thought of as a partition of the set S of all
possible ‘states of nature’. Examples include bets
on horse races or the weather, as well as standard
insurance contracts.

Under objective uncertainty, choices are deter-
mined by an individual’s attitudes towards risk.
Under subjective uncertainty, they are additionally
determined by the individual’s subjective beliefs
about the likelihoods of the various states and
events.

EXPECTED UTILITY THEORY AND
EXPERIMENTAL EVIDENCE

Axiomatic and Normative Foundations
of Expected Utility Theory

The earliest formal hypothesis of individual atti-
tudes towards risk, proposed by Pascal, Fermat
and others in the seventeenth century, was that
individuals evaluate monetary lotteries P = (x1,
P1;---3;%n,Pn) simply on the basis of their math-
ematical expectation E[P] =37, x;-p;. This hy-
pothesis was dramatically refuted by Daniel
Bernoulli’s ‘St Petersburg paradox’. In this game,
a fair coin is repeatedly flipped until it lands heads.
If it lands heads on the first flip, the player wins
$1; if it does not land heads until the second flip, the
player wins $2; and in general, if it does not land
heads until the i™ flip, the player wins $2'~'. Most
people would prefer to receive a sure payment of,
say, $50 than a single play of the St Petersburg
game, even though the expected pay-off of the
game is 3-81+382+g$d+ ... =$3+$5+%5+
... = $%00. In the first of what has turned out to be
a long series of such developments, Bernoulli
weakened the prevailing expected-value hypoth-
esis by positing that individuals instead evaluate
lotteries on the basis of their ‘expected utility’
>, U(x;)-pi, where the utility U(x) of receiving a
monetary amount x is probably subproportional
to x. Bernoulli himself proposed the form U(x)=
In(x), which leads to an evaluation of the St Peters-
burg game consistent with typical actual play.

The expected utility hypothesis came to domin-
ate decision theory on the twin bases of its elegant
and highly normative axiomatic development (von
Neumann and Morgenstern, 1944; Marschak, 1950)
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and its analytical power (Arrow, 1965; Pratt, 1964).
In the modern approach, risk preferences are de-
noted by the individual’s ‘weak preference’ rela-
tion > over lotteries, where P*>P reads ‘P* is
weakly preferred to P’, and its implied ‘strict pref-
erence’ relation > (where P* - P iff P* > P but not
P> P*) and ‘indifference’ relation ~ (where P* ~ P
iff P* > P and P > P*). The preference relation > is
said to be ‘represented’ by an expected utility pref-
erence function Vgy(P)=> 1, U(x;)p; if P*>
P & Vey(P*) > Veu(P). U(+) is called the “von Neu-
mann-Morgenstern utility function’.

The axiomatic and normative underpinnings of
expected utility theory are based on the notion of a
‘probability mixture’ «-P + (1 — «)-P* of two lotter-
ies P = (x1,p1;...;%0,pn) and P* = (xi,p5;.. 5%,
pi.), which is the lottery that would be generated
by a coin flip yielding the lotteries P and P* as
prizes with respective probabilities o and 1—o,
and where both stages of uncertainty (the coin flip
and the resulting lottery) are realized simul-
taneously, so that we can write o-P + (1 — o) -P*
=(x1, P15 s X, 0P X5, (L —a)-pl; .. xk, (1 — o)
pi.). A preference relation > will then be repre-
sented by an expected utility preference function
Veu(+) for some utility function U(-) if and only it
satisfies the following axioms:

o Completeness. For all lotteries P and P*, either P = P* or
P* > P, or both.

o Transitivity. For all lotteries P, P* and P**, if P>~ P* and
P* > P** then P > P*".

e Mixture Continuity. For all lotteries P, P* and P, if
P>P* and P*>P* then P*~oa-P+ (1 —a)-P*™ for
some o € (0,1).

o Independence Axiom. For all lotteries P, P* and P** and
all « € (0,1), if P> P* then o-P + (1 — a)-P** > a-P*+
(1—a)-P.

Completeness and Transitivity are standard axioms
in preference theory, and Mixture Continuity serves
as the standard Archimedean property in the con-
text of choice over lotteries. The key normative and
behavioral axiom of the theory is the Independence
axiom. Behaviorally, it corresponds to the property
of separability across mutually exclusive events.
Normatively, it corresponds to the following argu-
ment: ‘Say you weakly prefer P to P*, and have to
choose between an o:(1—a) coin flip yielding P if
heads and P** if tails, or an o:(1—0o) coin flip yielding
P* if heads and P** if tails. Now, either the coin will
land tails, in which case your choice won’t have
mattered, or it will land heads, in which case you
are back to a choice between P and P*, so you should
weakly prefer the first coin flip to the second.’

The tension between the compelling nature of the
Independence axiom and its systematic violations

by experimental subjects has led to a sustained
debate over the validity of the expected utility
model, with some researchers continuing to posit
expected utility maximization, and others de-
veloping and testing alternative models of risk
preferences.

Analytics of Expected Utility Theory

Analytically, the expected utility hypothesis is
characterized by the simplicity of its representation
(involving the standard concepts of utility and
mathematical expectation) as well as by the ele-
gance of the correspondence between standard
features of risk preferences and mathematical
properties of U(-). The most basic of these pro-
perties is ‘first-order stochastic dominance pre-
ference’, which states that raising the level of
some pay-off x; in a lottery P = (x1,p1;...; X, Pn) —
or alternatively, increasing its probability p; at
the expense of a reduction in the probability p; of
some smaller pay-off x; — will lead to a preferred
lottery. An expected utility maximizer’s pre-
ferences will exhibit first-order stochastic domin-
ance preference if and only if U(+) is an increasing
function of x.

A second property is ‘risk aversion’. Originally,
this was defined as the property whereby the indi-
vidual would always prefer receiving the expected
value of a given lottery with certainty, rather than
bearing the risk of the lottery itself. This is equiva-
lent to the condition that the individual’s ‘certainty
equivalent’” CE(P) of a nondegenerate lottery
P = (x1,p1;-..;%n,pn) — that is, the value that satis-
fies U(CE(P)) = >_i; U(x;)-pi — is always less than
the expected value of P. In modern treatments, risk
aversion is defined as an aversion to all ‘mean-
preserving spreads’ from any (degenerate or non-
degenerate) lottery, where a mean-preserving
spread consists of a decrease in the probability of
a pay-off x; by some amount Ap, and increases in
the probabilities of some higher and lower pay-offs
xi+o and x;—f by the respective amounts
Ap-B/(0.+ B) and Ap-o/(x+ f). This ‘spreads’ the
probability mass of the lottery in a manner that
does not change its expected value, so it can be
thought of as a “pure increase in risk’. An expected
utility maximizer will be risk-averse in both the
original and the modern senses if and only if U(-)
is a strictly concave function of x. If U(-) is twice
continuously differentiable, strict concavity is
equivalent to a negative second derivative U"(-).
Although the widespread purchase of actuarially
unfair state lottery tickets is evidence of the
opposite property of ‘risk preference’, the even
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more widespread purchase of insurance and the
prevalence of other risk-reducing instruments has
led researchers to hypothesize that individuals are
for the most part risk-averse.

After these basic characterizations, the most im-
portant analytical result in expected utility theory
is the Arrow-Pratt characterization of ‘comparative
risk aversion’, which states that the following four
conditions on a pair of risk-averse von Neumann-
Morgenstern utility functions Ua(-) and Ugp(-) are
equivalent:

o Comparative Concavity. U(-) is an increasing concave
transformation of Up(+), that is, Ua(x) = p(Up(x)) for
some increasing concave function p(-).

o Comparative Arrow—Pratt Measures. —U/(x)/U,(x) >
—Uj(x)/Up(x) for all x.

o Comparative Certainty Equivalents. For any lottery
P = (x1,p1;...;%Xn,pn), if CE4(P) and CEg(P) satisfy
Ua(CEA(P)) = 314 Ua(xi)-pi and Up(CEs(P)) = 3214
UB(xi)-pi, then CEA(P) < CEp (P)

o Comparative Demand for Risky Assets. For any initial
wealth W, constant >0, and random variable x such
that E[x]>r but P(x<r)>0, if y} and y} respectively
maximize E[Ua(y-x+ (W —9)-r)] and E[Up(y-Xx+
(W —7)-r)], then y < 7j.

(Note: here and elsewhere we write P(-) for the
probability of an event. This should not be con-
fused with the use of P to stand for a lottery.)

Each of these conditions can be interpreted as
saying that Ux(-) is at least as risk-averse as Up(-).
The first condition extends the above characteriza-
tion of risk aversion by the concavity of U(:) to its
comparative version across individuals, and the
second shows that this can be expressed in terms
of a numerical index —U"(x)/U’(x), known as the
‘Arrow-Pratt index of absolute risk aversion’. The
third condition extends the original notion of risk
aversion as low certainty equivalents (lower than
the mean) to its comparative form.

The fourth condition involves comparative opti-
mization behavior. Consider an individual with
initial wealth W to be divided between a riskless
asset yielding gross return r, and a risky asset
whose gross return x has a higher expected value,
but offers some risk of doing worse than the risk-
less asset. This condition states that the less risk-
averse utility function Up(-) will always choose to
invest at least as much in the risky asset as will the
more risk-averse U4(-).

The equivalence of the above four conditions, the
first two mathematical and the second two behav-
ioral, and their numerous additional behavioral
equivalencies and implications, has made the
Arrow-Pratt characterization one of the central
theorems in the analytics of expected utility

theory, with applications in insurance, financial
markets, auctions, the demand for information,
bargaining, and game theory.

Experimental Evidence on the
Independence Axiom

Experimental testing of the expected utility hypoth-
esis has centered on the Independence axiom,
either directly or via its implication that the
expected utility preference function Vgy(P) =
S U(x;)-p; is linear in the probabilities p;. One
of the best-known tests is the ‘Allais paradox’
(Allais, 1953). An individual is asked to rank each
of the following two pairs of lotteries (where
$1M = $1,000,000):

e a1, = {1.00 chance of $1IM  versus
.10 chance of $5M
ay = ¢ .89 chance of $1M
.01 chance of $0
o 4n — .10 chance of $5M versus
371 .90 chance of $0

de — .11 chance of $1M
* 7 ] .89 chance of $0

The expected utility hypothesis implies that the
individual’s choices from these two pairs must
either be a; and a4 (whenever .11-U($1M) >.10-U
($5M) +.01-U($0)), or else a, and as (whenever
A1-U($1M) <.10-U($5M) +.01-UU($0)).  However,
when presented with these choices, most subjects
choose a; from the first pair and a3 from the second,
which violates the hypothesis. Only a small
number violate the hypothesis in the opposite dir-
ection, by choosing a, and a4.

Although the Allais paradox was originally dis-
missed as an ‘isolated example’, subsequent experi-
mental work by psychologists, economists and
others has uncovered a similar pattern of violation
over a range of probability and pay-off values, and
the Allais paradox is now seen to be just one
example of a type of systematic violation of the
Independence axiom known as the ‘common-
consequence effect’. It is observed that for lotteries
P, P* and P**, pay-off ¢, and mixture probability
2€(0,1), such that P* first-order-stochastically
dominates P* and c lies between the highest and
lowest pay-offs in P, preferences depart from
the Independence axiom in the direction of
exhibiting «-P+ (1 —a)-P* > a-c+ (1 —a)-P* yet
P +(1—a)P* <ac+ (1 —a)-P* (Inthe Allais
paradox, these constructs are P = ($5M,10/11;
$0,1/11), P* = ($0,1), P** = ($1M,1),c = $1M and
o=".11.)
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Figure 1. Indifference curves in the probability triangle. (a) Expected utility indifference curves, which are parallel
straight lines. (b) Non-expected utility indifference curves, which ‘fan out’, illustrating the common-consequence effect.

Both the implications of the Independence axiom
and the nature of this violation can be illustrated in
the special case of all lotteries P = (X1,p1;
X2,p2; X3,p3) over a triple of fixed pay-off values
X1 < Xy < X3. Since we can write P = (X1,p1; X2,
1 —p1 — ps; X3,p3), each such lottery is uniquely
associated with a point in the (p;,p3) triangles of
Figures 1(a) and 1(b). Since we can write Vgy(P) =
U(J_Cl)-p1 + U(xp)-(1 - p1— p3) + U(J_Cg)~p3, the loci
of constant expected utility (‘expected utility indif-
ference curves’) consist of parallel straight lines as
in Figure 1(a). Since upward shifts in the triangle
represent increases in p;3 at the expense of p,, and
leftward shifts represent reductions in p; to the
benefit of p,, first-order stochastic dominance pref-
erence implies that these indifference curves will be
upward-sloping, with increasing levels of prefer-
ence in the direction indicated by the arrows.

Fixing the pay-offs at x; = $0, X, = $1M and
X3 = $5M, the Allais paradox lotteries a3, a5, a3 and
a4 are seen to form a parallelogram when plotted in
the probability triangle, which explains why paral-
lel straight-line expected utility indifference curves
must either prefer a4, and ay4 (as illustrated for the
relatively steep indifference curves of Figure 1(a))
or else prefer a, and a3 (for relatively flat expected
utility indifference curves). Figure 1(b) illustrates
‘non-expected utility indifference curves’ that ‘fan
out’, and are seen to exhibit the typical Allais para-
dox rankings of a; > a, and a3 > a4.

Another type of systematic experimental viola-
tion of the Independence axiom that has been un-
covered is known as the ‘common-ratio effect’. For
pay-offs x* > x>0, probabilities p*<p and r € (0, 1),
preferences depart from the Independence axiom
in the direction of exhibiting (x*,p*; 0,1 —p*) <

(x,p; 0,1 —p) yet (x*,r-p*; 0,1 —r-p*) > (x,7-p; 0,1
—r-p). For losses 0 >—x >—x", with p"<p and
r€(0,1), preferences depart in the reflected dir-
ection of (—x*,p* 0,1—p*) > (—x,p; 0,1 —p) yet
(—=x*,1r-p* 0,1 —rp*) < (—x,7p; 0,1 —r-p).

With the pay-offs X¥; =0, X, = x and X3 = x*, the
line segment between the lotteries b; = (x*,p*;
0,1—p*) and b, = (x,p; 0,1 — p) in the probability
triangle of Figure 2(a) is seen to be parallel to that
between b3 = (x*,r-p*; 0,1 —r-p*) and by = (x,7-p;
0,1—r-p), and the common-ratio-effect rankings
of by <D, and b3 > b, again suggests that indiffer-
ence curves depart from expected utility by fanning
out. For losses, with x; = —x*, Xxo = —x and X3 =0
(to maintain the ordering X; < X, < X3), the re-
flected rankings of —b; > —b, and —b3; < —b, again
suggest fanning out, as in Figure 2(b). Fanning out
is consistent with other observed forms of depart-
ure from the Independence axiom, although it is
not universal across subjects, and seems to be more
pronounced near the edges of the triangle than in
its central region.

GENERALIZATIONS OF EXPECTED
UTILITY THEORY

Non-Expected Utility Functional Forms

The above phenomena, as well as other systematic
departures from linearity in the probabilities, have
prompted researchers to develop more general
models of preferences over lotteries, primarily by
generalizing the functional form of the lottery pref-
erence function V(P)=V(x1,p1;...;%u,pn). The
earliest of these attempts, which used the form
V(P) =", U(xi)-n(pi), was largely abandoned
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Figure 2. Probability triangles illustrating the common-ratio effect. (a) Positive pay-offs. (b) Negative pay-offs (losses).

when it was realized that, except for the case
n(p) = p when it reduced to expected utility, it
was inconsistent with the property of first-order
stochastic dominance preference. Current models
include the following:

o Weighted Utility. V(P) =1L, U(x;)-n(p:)/ Sy S(xi)-

n(pi)
e Moments of Utility. V(P)=F > L, U(x)pi, Yoy
V(P) =321, U(x)-

U(xi)-pi, Yoy Uxi) i)
® Rank-Dependent Expected Ultility.

(G(eap) — GO p)for 1 < ... < x,
e Quadratic in the Probabilities. V(P) =313,

T(xi, xj)-pi-pj
Under the appropriate monotonicity or curvature
assumptions on their constituent functions U(:),
n(-), G(-), etc., each of these forms is capable of
exhibiting first-order stochastic dominance prefer-
ence, risk aversion and comparative risk aversion,
as well as many of the types of observed systematic
violations of the Independence axiom. Researchers
have also used these forms to revisit many of
the applications previously modeled by expected
utility theory (e.g. insurance, financial markets,
auctions), to determine which of the earlier
expected utility-based results are crucially depend-
ent on preferences exhibiting the expected utility
functional form, and which are robust to depart-
ures from expected utility.

Generalized Expected Utility Analysis

An alternative branch of research on non-expected
utility preferences does not rely on any specific
functional form, but links properties of attitudes
towards risk directly with the probability deriva-
tives of a general (i.e. not necessarily expected util-
ity) preference function V(P) = V(x1,p1;...; Xn, Pu)

over lotteries. Such analysis reveals that the basic
analytics of the expected utility model as outlined
above are in fact quite robust to general smooth
departures from linearity in the probabilities. It
proceeds from the correspondence between the
properties of a linear function as determined by
its coefficients and the properties of a nonlinear
function as determined by its partial derivatives —
in this case, between the “probability coefficients’
U(x1),...,U(x,) of the expected utility form !,
U(x;)-pi and the ‘probability derivatives’ oV (xq,
D1 X, Pu)/OP1, -, OV (X1, P15« X, Pn) /Opn Of a
general smooth preference function V(xi,p1;...;
Xu,Pn). Under such a correspondence, most of the
fundamental analytical results of expected utility
theory pass through directly (Machina, 1982). For
example:

e First-Order Stochastic Dominance Preference. Under
expected utility, this is equivalent to U(x) (the coeffi-
cient of P(x)) being an increasing function of x. For a
general smooth V(.), if dV(P)/dP(x) is an increasing
function of x at every lottery P, then for any pay-offs
x;>x; we will have 0V (P)/dp; > 9V (P)/dp; at each P, so
any (small or large) rise in p; and matching fall in p; will
lead to an increase in V(P) and hence will be preferred.

e Risk Aversion. Under expected utility, this is equiva-
lent to U(x) being a strictly concave function of x.
For a general smooth V(.), if 3V(P)/dP(x) is a strictly
concave function of x at each P, then for any
pay-offs x; — f <x; <xi+o we will have [0V(P)/
0P(x)) — AV (P) JaP(x; — )}/ > [V (P)/oP(x; +2) — oV
(P)/dP(x;)]/o at each P, which implies that each mean-
preserving spread over the pay-offsx; — f < x; < x; + o
will lead to a reduction in V(P) and hence will be
dispreferred.

o Comparative Risk Aversion. Under expected utility, this
is equivalent to Ux(-) being an increasing concave
transformation of Up(-). For general smooth V,(-) and
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Vg(+), if at each P the function dV 4(P)/0P(x) is some
increasing concave transformation of dVy(P)/dP(x),
then V4(-) and Vp(-) will exhibit the above conditions
for comparative certainty equivalence and compara-
tive demand for risky assets.

In addition to the above theoretical results, this
approach also allows for a direct characterization
of the fanning-out property in terms of how the
probability derivative dV(P)/dP(x), treated as a
function of x, varies with the lottery P. Namely,
the indifference curves of a preference function
V(-) will fan out for all pay-offs ¥; < X, < X3 if and
only if dV(P*)/dP(x) is a concave transformation of
aV(P)/aP(x) whenever P first-order-stochastically
dominates P.

Regret Theory

Another type of non-expected utility model dis-
penses with the assumption of an underlying pref-
erence order > over lotteries, and instead derives
choice behavior from the underlying psychological
notion of ‘regret’ — that is, the reaction to receiving
an outcome x when an alternative decision would
have led to a preferred outcome x* (Loomes and
Sugden, 1982). The opposite experience, namely of
receiving an outcome that is preferred to what the
alternative decision would have yielded, is termed
‘rejoice’. The primitive for this model is a ‘rejoice
function” R(x, x*) which is positive if x is preferred
to x*, negative if x" is preferred to x, and zero if they
are indifferent, and satisfies the skew-symmetry
condition R(x,x*) = —R(x*, x).

In the simplest case of pairwise choice over two
lotteries P = (x1,p1;...;%n, pn) and P* = (x7,p5; .. .;
Xk, pr.) that are realized independently, the indi-
vidual’'s expected rejoice from choosing the lottery
P over the alternative lottery P is given by the
formula >, Z]":l R(xi,x})-pi-p;, and the individ-
ual is predicted to choose P if this value is positive,
to choose P if it is negative, and to be indifferent if
it is zero. Various proposals for extending this ap-
proach beyond pairwise choice have been made,
including a formal result that shows that for any
finite collection of lotteries, one of these lotteries or
some randomization over them will exhibit nonne-
gative expected rejoice with respect to every other
lottery or randomization.

As with the non-expected utility functional
forms listed above, various monotonicity and
curvature assumptions on the rejoice function
R(-,;) can be shown to correspond to various
properties of risk preferences, such as risk aversion
and comparative risk aversion, as well as to the
general fanning-out property. Since this model

derives from the pairwise comparison of lotteries
rather than from their individual evaluation by
some preference function, it allows pairwise choice
to be intransitive, so that an individual could
choose P over P*, P* over P**, and P** over P.
Although some have argued that such cyclic choice
allows for the phenomenon of ‘money pumps’, it
also allows the model to solve the problem of “pref-
erence reversal’ described below.

SUBJECTIVE EXPECTED UTILITY AND
AMBIGUITY

Axiomatic and Normative Foundations
of Subjective Expected Utility

The expected utility model of choice under subject-
ive uncertainty — sometimes called the ‘subjective
expected utility’ model — hypothesizes that the in-
dividual’s preference relation > over subjective
acts f(-) =[x; on Ey;...;x, on E,] can be repre-
sented by a preference function of the form
Wseu(f(1)) = Yoiq U(xi) - u(E;) for some von Neu-
mann-Morgenstern utility function U(-) and ‘sub-
jective probability measure” u(-) over events. Thus,
both attitudes towards risk and subjective beliefs
are specific to the individual, and the values
u(E1),...,u(E,) are sometimes called ‘personal
probabilities’. By virtue of its independent repre-
sentation of risk attitudes by the utility function
U(-), and beliefs by the subjective probability meas-
ure u(-), the subjective expected utility model is
sometimes described as achieving a ‘separation of
preferences and beliefs’.

By analogy with the probability mixture of two
objective lotteries, the axiomatic and normative
underpinnings of the subjective expected utility
model are based on the notion of a ‘subjective
mixture’ [f(-) on E; f*(-) on~ E] of two acts
f()=[xion Eq;...;x, on E,] and f*(-) = [x] on E3;
...;x. on E’,], which is the act that would yield
the same outcome as f{(-) should the event E occur,
and the same outcome as f(-) should the event
~E occur, so that we can write [f(-) on E; f*(-)
on~E]=[xgon ENEy;...;x, on ENE, x} on ~
ENE;;...;x;. on~ENE.]. An event E is said to
be ‘null’ for the individual if [x* on E; f(-) on
~E] ~ [x on E;f(-) on ~E] for all outcomes x and
x* and all acts f(-), so that the individual effectively
treats E as if it had zero likelihood. Since we can
identify each outcome x with the ‘constant act’
[x on S], we can write x* > x if and only if [x* on S]
> [x on S]. The individual’s preferences over
subjective acts can then be represented by a
subjective expected utility preference function
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Wseu(f(+)) = >oiq U(xi) - u(E;) for some U(-) and
u() if and only they satisfy the following axioms
(Savage, 1954):

e Completeness. For all acts f(-) and f7(:), either
() = () or f(-) = £(-), or both.

o Transitivity. For all acts f(-), f*(-) and f**(), if f(-) = f*(")
and f°() = £**() then f() = £().

o Eventwise Monotonicity. For all outcomes x* and x, non-
null events E and acts f(-), [x* on E; f(-) on ~E] > [x on E;
f(:) on ~E] if and only if x* > x.

o Weak Comparative Probability. For all events A and B and
outcomes x* > x and y* >y, [x" on A; x on ~A] = [x" on
B; x on ~B] implies [y on A; y on ~A] = [y" on B; y
on ~B]J.

o Small-Event Continuity. For all acts f(-) > g(-) and out-
comes x, there exists a partition {Ej,...,E,} such that
f()>[x on E; g(-) on ~E;] and [x on E; f(-) on ~E;] >
g(-) foreachi=1,...,n.

e Sure-Thing Principle. For all events E and acts f(-), f*(-),
g() and h(), [f*() on E; g() on ~E] = [f() on E; g() on
~E] implies [f*(-) on E; h(-) on ~E] = [f(:) on E; h(:)
on ~E]J.

Completeness and Transitivity are as before, and
Eventwise Monotonicity is the subjective analogue
of first-order stochastic dominance preference.
Weak Comparative Probability essentially ensures
that the individual’s ‘revealed likelihood ranking’
of a pair of events A and B, as given by their
preference for staking the more preferred of a pair
of prizes on A versus staking it on B, is stable in the
sense that it does not depend on the particular
prizes involved. Small-Event Continuity serves as
the standard Archimedean property in the context
of choice over subjective acts. The key normative
and behavioral axiom of subjective expected utility
theory is the Sure-Thing Principle. Behaviorally, it
once again corresponds to the property of separ-
ability across mutually exclusive events. Norma-
tively, it corresponds to the same argument as for
the Independence axiom, with the objective ran-
domization by the «:(1 —a) coin replaced by the
‘subjective randomization’ via the events E and ~E.

State-dependent Utility

In some subjective settings, the individual’s valua-
tion of outcomes may depend on the source of
uncertainty itself. Thus, for the mutually exclusive
and exhaustive events (‘rain’,’shine’) and prizes
(“umbrella’, ‘sun lotion”), each of which is preferred
to $0, the individual may well exhibit the prefer-
ences [umbrella on rain; $0 on shine] > [umbrella
on shine; $0 on rain] and [sun lotion on rain; $0 on
shine] < [sun lotion on shine; $0 on rain], which
violates the Weak Comparative Probability axiom
for x*=umbrella, y"=lotion, x=y=%$0, A=rain

and B =shine, and hence is inconsistent with the
subjective expected utility preference function
Wsgu(-). This phenomenon, known as ‘state de-
pendence’, can occur even when the outcomes are
monetary pay-offs: if the state of nature is the indi-
vidual’s health, the utility of a $50,000 prize may be
very high in states where the individual requires a
$50,000 operation to survive, much lower in states
where the individual requires much more than that
for the operation, and somewhere in between in
states of good health.

The subjective expected utility model can be
easily adapted to accommodate the phenomenon
of state dependence, by allowing the utility func-
tion U(-|E) to depend upon the event or state of
nature, so that the preference function over acts
takes the ’‘state-dependent expected utility’ form
Wspeu(x1 on Eq;...x, on E,) = >0 U (x| Ei) - u(Ej).
Most of the analytics of the standard (i.e. ‘state-
independent’) form Wsgy(-) extend to the state-
dependent case (Karni, 1985). However, under
state dependence, subjective probabilities cannot
be uniquely inferred from preferences over acts:
for any state-dependent preference function
Wspeu(f(+)) = >oibq U(xi|Ei)-u(E;), and any distinct
subjective probability measure p*(-) that satisfies
p(E) > 0= u(E) > 0, Wepgu(+) is indistinguish-
able from the preference function W¢ye,(f(+)) =

U (x|E)-p*(Ei)) with U*(-|) defined by
U (x|E) = U(x|E)-[u(E)/w (E)).

Ambiguity and Nonprobabilistic Beliefs

A more serious departure from the notion of well-
defined probabilistic beliefs arises from the phe-
nomenon of ‘ambiguity’, which is distinct from
the phenomenon of state dependence and much
more difficult to model. The best-known example
is the ‘Ellsberg paradox” (Ellsberg, 1961). An indi-
vidual must draw a ball from an opaque urn that
contains 30 red balls and 60 black or yellow balls in
an unknown proportion, and is offered four pos-
sible bets on the color of the drawn ball, as shown
in Figure 3.

Most individuals exhibit the preference rankings
f1() = f2(-) and fa(-) > f3(-). When asked why, they
explain that the probability of winning under f,(:)
could be anywhere from 0 to Z whereas the prob-
ability of winning under f;(-) is known to be exactly
1 and they prefer the act that offers the known
probability. Similarly, the probability of winning
under f3(-) could be anywhere from 1 to 1 whereas
the probability of winning under f4(-) is known to
be exactly 3, so it is preferred. However, these pref-
erences are inconsistent with any assignment of
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30 balls 60 balls
Red Black Yellow
f1¢) $100 $0 $0
f2() $0 $100 $0
3(¢) $100 $0 $100
f4(-) $0 $100 $100

Figure 3. Four possible bets on the color of the drawn
ball in the ‘Ellsberg paradox’. The proportion of black to
yellow balls is unknown. Most individuals prefer f;(-) to

f2(-) and f4(-) to f3(:).

numerical subjective probabilities u(red), p(black),
u(yellow) to the three events: if the individual were
choosing on the basis of such probabilistic beliefs,
the ranking f1(-) > f2(-) would reveal that p(red)>
u(black), but the ranking fa(-) > f3(-) would reveal
that p(red) < p(black).

This phenomenon be cannot be accommodated
by simply allowing the event to enter the utility
function and working with the state-dependent
form Y7, U(xi|E;)-u(E;), since this form still satis-
fies the Sure-Thing Principle, whereas the prefer-
ences f1(-) > f2(-) and fa(-) > f3(-) violate this axiom
(for E=red Ublack and ~E =yellow). The Ellsberg
paradox and related examples are attributed to the
phenomenon of “ambiguity aversion’, whereby in-
dividuals exhibit a general preference for bets
based on probabilistic partitions such as ({red,
black Uyellow} rather than on ambiguous parti-
tions such as {black, red U yellow}.

Just as the Allais paradox and related violations
of the Independence axiom led to the development
of non-expected utility models of risk preferences,
the Ellsberg paradox and related examples have led
to the development of nonprobabilistic models of
beliefs. The most notable of these involves re-
placing the additive subjective probability measure
u(-) over events by a “capacity’ C(-), which is similar
to u(-) in that it satisfies the properties C(0)) =0,
C(S)=1, and E C E* = C(E) < C(E*), but differs
from p(-) in that it is not necessarily additive.
By labeling the outcomes in any act so that
x1 < ... 2 x, and writing the subjective expected
utility formula as Wepy(f(1)) = Yn,; U(xi)-p(E;)
= Y, Ux)-(u(U_Ey) — (UZLE;)), we can gener-
alize from an additive u(-) to a non-additive C(-) to

obtain the ‘Choquet expected utility” preference
function  Wenoquet(f(+)) = > u(xi)'(C(U]l':lEj)_
C(UZE))) over subjective acts (Schmeidler, 1989).
Selecting U($100) =1, U($0) =0, C(red) =1, C(black
Uyellow) =3, C(black) =3, C(red Uyellow) =3 yields
the values WChoquet(fl(')) = %/ WChoquet (fZ()) = %/
WChoquet(f3(')) = %/ WChoquet(f4(')) = %/ which cor-
respond to the typical Ellsberg rankings.

Another alternative to the subjective expected
utility model of act preferences, also capable of
exhibiting ambiguity aversion, is the ‘maxmin
expected utility’ form, which involves a family
{u.(-)|r € T} of additive probability measures
over the events, and the preference function

Wmaxmin(f(')) = MiNger Z?:l u(xi)'rur(Ei)'

DESCRIPTION AND PROCEDURE
INVARIANCE

Although the alternative models described above
drop or weaken many of the axioms of standard
objective and subjective expected utility theory,
they typically retain the primary implicit assump-
tions of the standard theory, namely that: the
objects of choice (objective lotteries or subjective
acts) can be unambiguously described; net changes
in wealth are combined with any initial endow-
ment and evaluated in terms of the final wealth
levels they imply; and situations that imply the
same set of final opportunities (the same set of
objective lotteries or same set of subjective acts
over final wealth levels) will lead to the same
choice. They also assume that the individual is
able to perform the mathematical operations neces-
sary to determine this opportunity set, e.g. to calcu-
late the probabilities of compound or conditional
events and add net changes to initial endowments.
However, psychologists have uncovered several
systematic violations of these assumptions.

Framing Effects

Effects whereby alternative descriptions of the
same decision problem lead to systematically dif-
ferent responses are called ‘framing’ effects. Some
framing effects in choice under uncertainty involve
alternative representations of the same likelihood.
For example, contingency of a gain or loss on the
joint occurrence of four independent events, each
with probability p, is found to elicit a different
response from contingency on the occurrence of a
single event with probability p*. In comparison
with the single-event case, making a gain con-
tingent on the joint occurrence of events seems
to make it more attractive, and making a loss
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contingent on the joint occurrence of events seems
to make it more unattractive (Slovic, 1969).

Other framing effects in choice under uncertainty
involve alternative representations of the same
final wealth levels. Consider the following two
proposals.

e ‘Inaddition to whatever you own, you have been given
1,000 (Israeli pounds). You are now asked to choose
between a %2:% chance of a gain of 1,000 or 0 or a sure
chance of a gain of 500.

e ‘Inaddition to whatever you own, you have been given
2,000. You are now asked to choose between a ¥%:%
chance of a loss of 1,000 or 0 or a sure loss of 500.

These two problems involve identical distributions
over final wealth. However, when put to two dif-
ferent groups of subjects, 84% chose the sure gain in
the first problem but 69% chose the %:% gamble in
the second (Kahneman and Tversky, 1979).

Response-Mode Effects and Preference
Reversal

Effects whereby alternative response formats lead
to systematically different inferences about under-
lying preferences are called ‘response-mode’
effects. For example, under the expected utility
hypothesis, an individual’'s von Neumann-
Morgenstern utility function can be assessed or
elicited in a number of different ways, which typic-
ally involve a sequence of prespecified lotteries
Py, Py, P3,..., and ask for the individual’s certainty
equivalent CE(P;) for each lottery P;, or else the
‘gain equivalent’ G; that would make the lottery
(Gi,3 $0,3) of equal preference to P;, or else the
‘probability equivalent’ gp; that would make the
lottery ($1000, pi; $0,1 — ;) of equal preference to
P;. Although such procedures should be expected
to generate equivalent assessed utility functions,
they have been found to yield systematically differ-
ent ones (Hershey and Schoemaker, 1985).

In an experiment that demonstrates what is now
known as the “preference reversal phenomenon’,
subjects were first presented with a number of
pairs of bets and asked to choose one bet out
of each pair. Each pair of bets took the form of a
‘p-bet’, which offered a p chance of $X* and a 1—p
chance of $X, versus a ‘$-bet’, which offered a g
chance of $Y* and a 1—q chance of $Y, where
X*>X,Y">Y,p>gand X* <Y*. The names ‘p-
bet” and ‘$-bet’ derive from the greater probability
of winning in the first bet, and greater possible gain
in the second bet (in some cases, X and Y took on
small negative values). Subjects were next asked for
their certainty equivalents of each of these bets, via
a number of standard elicitation techniques.

The expected utility model, and most of the
aforementioned alternative models, predict that
for each such pair, the bet that was selected in the
direct-choice problem would also be the one
assigned the higher certainty equivalent. However,
subjects exhibit a systematic departure from this
prediction in the direction of choosing the p-bet in
a direct choice but assigning a higher certainty
equivalent to the $-bet (Lichtenstein and Slovic,
1971). Although this finding initially generated
widespread scepticism, especially among econo-
mists, it has been widely replicated by both psych-
ologists and economists in a variety of different
settings involving real-money gambles, patrons of
a Las Vegas casino, group decisions, and experi-
mental market trading. By viewing it as an instance
of intransitivity ($-bet~ CE($-bet) > CE(p-bet) ~ p-
bet >~ $-bet), some economists have explained the
phenomenon in terms of the regret theory model.
However, most psychologists and a growing
number of economists regard it as a response-
mode effect, specifically, that the psychological
processes of valuation (which generates certainty
equivalents) and choice are differentially influ-
enced by the probabilities and pay-offs involved
in a lottery, and that under certain conditions this
can lead to choice and valuation that reveal oppos-
ite ‘underlying’ preference rankings over a pair of
gambles.

SUMMARY

Since the work of Bernoulli, the theory of choice
under uncertainty has seen both a tension and a
scientific interplay between theoretical models of
decision making and experimentally observed vio-
lations of these models. Current research in the
field continues to reflect this tension, while the
degree of interplay has increased, with theorists
now more willing to model experimentally gen-
erated phenomena, and experimenters more
willing to provide constructive feedback on these
attempts.
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Circadian rhythms are daily (about 24 h) rhythms of
behavior, physiology and biochemistry that are con-
trolled by internal clocks. These rhythms are en-
trained by environmental cues, and modulate
cognitive performance.

INTRODUCTION

The rotation of the earth about its axis creates
daily cycles of light, temperature, humidity and

other geophysical variables that have had a pro-
found impact on the evolution of life. Most living
organisms, from single-celled bacteria to fungi,
plants and animals, exhibit daily rhythms in
their biochemistry, physiology and behavior that
mirror the dramatic environmental changes that
define the solar day. Some daily rhythms may
represent a direct response to environmental
stimuli, but most are controlled by one or more
internal, ‘circadian’ clocks (from the Latin circa,



