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model and the use of a special class of subjective events, acts and mixtures that
exhibit “almost-objective” like properties. The classical expected utility/subjective
probability characterizations of outcome monotonicity, outcome derivatives, proba-
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tive risk aversion are all globally “robustified” to general event-smooth preferences
over subjective acts.
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1 Introduction

This paper addresses the question:

“To what extent are the analytics of the classical expected utility/subjective prob-
ability model of choice under subjective uncertainty robust to departures from
both the assumption of expected utility risk preferences and the assumption of
probabilistic beliefs?”

We approach this question by combining the following ideas:

The Calculus Approach to Robustness, which can be used to establish the local
and global robustness of any model that exhibits “constant sensitivity” in its
key variables, and which has already been used to establish the robustness of
expected utility analysis under objective uncertainty.!

An Event-Theoretic Representation of the Classical Model, which shows that
the expected utility/subjective probability model under subjective uncertainty
exhibits constant sensitivity in the events attached to each uncertain outcome,
and is therefore also amenable to the above approach to robustness.

While analogous to the earlier robustification of objective expected utility analysis
in both its goals and its overall findings, the subjective analysis of this paper involves
quite different mathematical tools, and does not assume prior knowledge of the
earlier approach.

The following section motivates the analysis by a discussion of the classical
model, its main empirical violations, existing responses to these violations, and
the argument for robustification. Section 3 sketches out the calculus approach to
robustness, and how it has been applied to expected utility analysis under objective
uncertainty. Section 4 presents the tools needed to extend this approach to subjec-
tive uncertainty, namely an event-theoretic representation of the classical model,
the notion of “event-smoothness,” and a special class of subjective events, acts and
mixtures that exhibit “almost-objective” like properties. Section 5 establishes the
global robustness of the classical expected utility/subjective probability characteri-
zations of outcome-monotonicity, outcome derivatives, probabilistic sophistication,
comparative and relative subjective likelihood, and comparative risk aversion. Sec-
tion 6 discusses related work of Epstein, and extensions of the present analysis.
Proofs are in an Appendix.

2 The classical model of risk preferences and beliefs

By “classical model” we mean the subjective expected utility (SEU) model
proposed by Ramsey (1931) and fully developed by Savage (1954), in which
choice over subjectively uncertain prospects is characterized by expected utility
risk preferences and standard probabilistic beliefs.> The key sense in which this

! E.g., Machina (1982, 1983, 1984, 1989, 1995), Dekel (1986), Allen (1987), Karni (1987, 1989),
Chew, Epstein and Zilcha (1988), Chew and Nishimura (1992), Bardsley (1993) and Wang (1993).
2 See Fishburn (1982, Chs.9-12) or Kreps (1988, Chs. 8-10) for modern expositions of this approach.
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model differs from the earlier objective expected utility model of Bernoulli (1738)
and von Neumann-Morgenstern (1947) is the manner in which the two models
represent uncertainty. In the objective framework, uncertainty comes prepackaged
in terms of numerical probabilities, and the objects of choice are probability
distributions over outcomes or lotteries P = (x1,p1;...;Tn,pn), yielding
outcome z; with probability p;. But in the more realistic subjective framework,
uncertainty is represented by a set S = {...,s,...} of mutually exclusive and
exhaustive states of nature, or by events E (subsets of S), and the objects of choice
are bets or acts f(-) = [x1 on Ei;...;2, on E,], which specify the outcome
x = f(s) as a function of the state or event that occurs. The SEU model posits a
subjective probability measure p(-) over events, and an expected utility preference
function Vpy(P) = 7" U(z;)-p; over lotteries, such that preferences over
subjective acts can be represented by the SEU preference function

Wsgu(z1on Ey;...;aponEy) = Veu(zn, w(Er);. .. 5 @, w(Ey))

= Y V) nE) = [U()-duts)
The classical SEU form can be represented as the composition of two mappings:
[z10on Ey;...san on By = (w1, (B s, n(En)) = Yoi U () pu(Es)

In the first mapping, the subjective probability measure y(-) is used to determine
the act’s implied lottery over outcomes. In the second mapping, the expected utility
preference function Vg (+) is used to determine the level of preference of this
implied lottery, and by implication, the level of preference for the act. Thus, the
classical model is often represented as the joint hypothesis of

&)

Probabilistic Sophistication: Acts are evaluated solely on the basis of their
implied lotteries over outcomes. This property only involves the individual’s
beliefs.

Expected Utility Risk Preferences: Preferences over implied outcome lotteries are
linear in the probabilities. This property only involves the individual’s attitudes
toward risk.

This so-called “separation of beliefs from risk preferences” — with the use of sub-
jective probabilities to represent the former and expected utility to represent the
latter — is often viewed as the characteristic feature of the classical SEU model.

2.1 The two orthogonal hypotheses of the classical model

Although the separation of the classical model into the hypotheses of probabilisti-
cally sophisticated beliefs and expected utility risk preferences accords with both
intuitive and normative ideals of individual and statistical decision making, it is
less than perfect from a scientific or analytical point of view, for the simple reason
that the two hypotheses are nested: the hypothesis of expected utility risk pref-
erences is defined over the output of the probabilistic sophistication hypothesis,
namely the implied lottery of each act. Accordingly, we shall organize our analysis
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in terms of an alternative pair of hypotheses, which also jointly characterize the
classical model, but which are orthogonal in the sense that each is defined directly
on preferences over subjective acts, and each can be satisfied independently of the
other:

Event-Separability: Preferences over acts are separable across mutually exclusive
events.

Probabilistic Sophistication: As before, acts are evaluated solely on the basis of
their implied lotteries over outcomes, via some subjective probability measure

p(-).

Axiomatically, these two hypotheses are respectively equivalent to, and can be rep-
resented by:

P2 Sure-Thing Principle (Savage (1954)): For all events F and acts f(-), f*(-),
g(‘)v h()
fH(yon E]_[f()on E] _[f*()on E]_[f()on E
{g() on NE] 7 {g() on NE] - [ h(-) on NE] 7 {h() on NE]

P4* Strong Comparative Probability Axiom (Machina and Schmeidler, 1992):
For all outcomes x* > x, y* > y, disjoint events A, B and acts g(-), h(-):

¥ on A x on A y* on A y on A
r on B =| 2" on B =|y on B =|y* on B
g() elsewhere g(-) elsewhere h(-) elsewhere h(-) elsewhere

Behaviorally, the two hypotheses can be respectively described as:

Stable Subact Preferences: The ranking of any pair of subacts [f*(-) on F]
versus [f(-) on E'] is not affected by identical changes in statewise-identical
payoffs off of the event E.

Stable Revealed Likelihood Rankings: The preferred assignment of greater versus
lesser preferred payoffs to the events A versus B is not affected by identical
changes in statewise-identical payoffs off of AU B, or by the values of the
greater/lesser preferred payoffs themselves.

Theoretically, the two hypotheses can be shown to respectively characterize the
following forms for the preference function over acts:

State-Dependent Expected Utility: The preference function Weppy (f(+))
= [sU(f(s)|s)-du(s), for some subjective probability measure x(-) and
state-dependent utility function U (z|s).

Probabilistically Sophisticated Non-Expected Utility: The preference function
Wps(f() = V(xy, u(Er);... 20, u(Ey,)), for some subjective proba-
bility measure u(-) and non-expected utility preference function V(P) =
V(x1,p1;... ; Tn, pn) over lotteries.
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2.2 Three violations of the classical model

The classical SEU model is violated by three well-known phenomena — Allais-type
violations of event-separability, state-dependence type violations of probabilistic
sophistication, and Ellsberg-type violations — which can be illustrated by the exam-
ples in Table 1.> Each example involves three mutually exclusive and exhaustive
events, and four acts defined on these events. Outcomes are in dollars, and 1M =
1,000,000. The uncertainty in the Allais example comes from an urn known to con-
tain 10 red, 1 black, and 89 yellow balls, and the rankings c; > a2 and ag < ay
are the well-known Allais (1953) preferences over these acts’ implied lotteries. The
uncertainty in the state-dependence example involves the individual’s future health,
with three events: staying healthy, having a debilitating tumor that is fatal without
a $50,000 operation, or getting the flu. The rankings 3; = (2 and 83 < (4 reflect
the greater usefulness of $10,000 when healthy than with the tumor, but the greater
need for $50,000 with the tumor than when healthy. The uncertainty in the Ellsberg
example comes from an urn known to contain 30 red balls and 60 black and/or
yellow balls in unknown proportion, and the rankings v; > 72 and y3 < 74 are
the well-known Ellsberg (1961) preferences. In each case, the stated preferences
violate the classical SEU form (1).

Table 1. Three violations of the classical subjective expected utility model

Allais paradox* State-dependence Ellsberg paradox

30 balls 60 balls
10 1 89 healthy tumor flu P N N
balls ball balls red  black yellow
ar IM IM IM B1 10,000 1,000 100 1 100 0 0
az SM 0 IM B2 1,000 10,000 100 Y2 0 100 0
az 1M 1M 0 B3 50,000 5,000 500 v3 100 0 100

as SM 0 0 Ba 5,000 50,000 500 Ya 0 100 100

a1 ag yet ag<aq B1> B2 yet B3 <P Y172 yet y3<7a

2.3 Theoretical responses to the violations

Researchers have responded to Allais-type violations by the development and
analysis of non-expected utility preference functions over lotteries — that is, pref-
erence functions V(P) = V(x1,p1;... ;%n,pn) Which drop the expected util-
ity property of linearity in the probabilities. Work in this area has proceeded
along two lines: the development and analysis of specific functional forms for
V(x1,p15. .. ;Tn,Pn), and the analysis of general smooth V (21, p1; ... ;Tn, Pn)

3 See the excellent reviews of these phenomena by Sugden (1986, 1991), Weber and Camerer (1987),
Karni and Schmeidler (1991), Epstein (1992), Kelsey and Quiggin (1992), Camerer and Weber (1992)
and Starmer (2000).

4 Thave reversed the usual labeling of the last two Allais acts in order to better highlight the structure
of the violation.

5> Most notably, the rank-dependent form of Quiggin (1982), the weighted utility form of Chew
(1983), the quadratic form of Chew, Epstein and Segal (1991), and the disappointment aversion form
of Gul (1991).
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functions via their probability and/or outcome derivatives (as described below). In
each case, non-expected utility risk preferences are completely compatible with
probabilistically sophisticated beliefs. That is, for any non-expected utility prefer-
ence function V (21, p1;. .. ; n, Pn) and any subjective probability measure y(-),
the pair of mappings

[xlon Eq; ...;xnonE"]%(xl,u(El);...;xn,u(En))%V(:cl,u(El);...;z",u(En))
yields a probabilistically sophisticated non-expected utility preference function
Wps(z1on Ey;...5zpon By) = V(zg, p(E); ... san, w(En))  (2)

over subjective acts, which can be shown to be the generalization of the classical
form (1) obtained by retaining the hypothesis of probabilistic sophistication but
dropping the hypothesis of event-separability.

Researchers have primarily responded to state-dependence type violations
of probabilistic sophistication by working with the well-known state-dependent
expected utility preference function®

VVSDEU(gclonEl7 . xnonE /U |s -du(s Z/U (z4]s)-du(s) (3)

which can be shown to be the generalization of the classical form (1) obtained
by retaining the hypothesis of event-separability but dropping the hypothesis of
probabilistic sophistication.

One may ask why state-dependent preferences constitute a violation of proba-
bilistic sophistication, since they can be represented by a form (3) that still contains a
subjective probability measure y(-). The answer is that probabilistic sophistication
does not simply mean that subjective probabilities are somehow used in the evalu-
ation of an act, but rather, that they serve to completely encode its uncertainty, so
that the only feature of an outcome’s event that matters is its subjective probability.
Thus, if E; has a greater subjective probability than F;, the individual would always
prefer staking the more preferred outcome on F; and the less preferred outcome
on E; rather than vice versa — such preferences are said to “reveal” the individual’s
comparative likelihood ranking of the two events. However, the rankings 31 > (2
and B3 < (3, are seen to violate this property, and constitute a revealed likelihood
reversal. Although the form (3) involves a subjective probability measure p(-),
it accommodates state-dependence type violations of probabilistic sophistication
by allowing the events and outcomes to interact in an additional manner, via the
function U (z|s).

Since the Ellsberg rankings vy; > 72 and 3 < 4 are seen to violate both event
separability and probabilistic sophistication (that is, to violate both P2 and P4%*),
they cannot be represented by the probabilistically sophisticated form (2) or by
the state-dependent expected utility form (3).” Thus in contrast with the Allais

6 E.g., Karni (1983, 1985).

7 Thatis, if {Eh1,E3,E3} are the Ellsberg events and we assume monotonicity in wealth, the revealed
likelihood reversal y; > 2 and 3 < 4 cannot be represented by any preference function of the form
V(z1, p(Er); x2, u(E2); x3, w(E3)), or of the form U(x1|E1)- p(E1) + U(x2|E2)- u(E2) +
U(zs|Es)- p(Es).
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Paradox (which can be accommodated by non-expected utility risk preferences) and
state dependence (which can be accommodated by state-outcome interactions), the
Ellsberg Paradox seems to strike at the heart of the classical probability-theoretic
notion of beliefs. Although the “explanation” of the paradox in terms of a general
aversion to ambiguity is well known, this observation does not “solve” the problem
so much as underscore its key point, namely that, even if we allow for non-expected
utility risk preferences or state-dependence, subjective probabilities do not suffice
to encode all aspects of uncertain beliefs.

Responses to Ellsberg-type violations have primarily consisted of alternative
formulas for the subjective preference function W (-) which replace its subjective
probability measure ;(-) by some more general structure for beliefs. One of these
is the Choquet expected utility form

n i i1
Wehoquet (t10n Ey; ... 52, on Ey) = Z U(a:i)[C(UEj)f C(UE])} 4
i1 j=1 j=1

for some utility function U (-) and capacity (i.e. monotonic non-additive measure)
C(+), where the outcomes are labeled so that x1 < ... < z,, (e.g., Gilboa, 1987,
Schmeidler, 1989; Wakker, 1989, 1990; Gilboa and Schmeidler, 1994). Another is
the maxmin expected utility form

Wnazmin (:171 onFEq;...;x,on En) = min/ U(f(s)) “dpr(s)
T€T Js

n

&)
grggi:l (i) -pr(Ei)

for some utility function U(-) and family {{1-(-)|7 € T} of probability measures

on S (e.g., Giardenfors and Sahlin (1982, 1983), Cohen and Jaffray (1985), Gilboa

and Schmeidler (1989)).% Several other forms for representing preferences in the

Ellsberg Paradox have been proposed. °

The above theoretical and empirical relationships can be summarized as in
Table 2.

8 Although both W¢ hoquet (-) a1d Winazmin (+) can accommodate the joint departure from event-
separability and probabilistic sophistication in the Ellsberg example of Table 1, each form implies that
preferences are event-separable and probabilistically sophisticated over large subregions of the space
of subjective acts, so any departure from event-separability or probabilistic sophistication within any of
these regions will constitute a violation of these forms.

9 Some models represent beliefs by decision weights which depend on the assignment of outcomes to
events (Hazen, 1987, 1989; Luce, 1988, 1991), by lexicographic probabilities (Blume, Brandenberger
and Dekel, 1991), by second order probabilities (Nau, 2001), or by indeterminate probabilities (Whalley,
1991; Nau, 1989, 1992, 2002). Other models allow the incorporation of objective information on some
events but not others (Eichberger and Kelsey, 1999), have ordinal but not cardinal likelihoods (Kelsey,
1993), allow the level of ambiguity to affect the utility of an outcome (Sarin and Winkler, 1992), evaluate
acts just on the basis of their outcomes (Barberd and Jackson, 1988), or represent uncertainty aversion
by incomplete preferences (Bewley, 1986, 1987). Sarin and Wakker (1992) derive a belief measure
which is only additive over a prespecified subalgebra of events, Fishburn (1991, 1993) axiomatizes a
primitive degree of ambiguity relation, and Fishburn (1989) and Fishburn and LaValle (1987) consider
skew-symmetric additive act preferences.
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Table 2. Orthogonal hypotheses, theoretical forms and empirical phenomena

Theoretical forms characterized by: Empirical phenomena consistent with:
event ~ event event ~ event
separability | separability separability | separability
robabilistic robabilistic Allais
SI())phistication Wspu () | Wes() SI())phistication preferences
~probabilistic W ~probabilistic|  state- Ellsberg
sophistication sppu() sophistication |dependence | preferences

2.4 The argument for robustification

Although each of the forms Wps (), Wspru (+), Wenhoquet () and Wiazmin(+)
succeeds in accommodating its own respective departure from the classical model
(Allais, state-dependence or Ellsberg), none of them can be considered a satisfactory
alternative to the classical model, for two reasons.

The first reason is that each form constitutes a partial rather than a general
response to the above set of violations, in the sense that it can accommodate some
of the violations but not others. Thus, Wpg(+) cannot accommodate departures
from probabilistic sophistication, Ws p gy () cannot accommodate departures from
event-separability, and while Wepoquet () and Wiazmin (+) can accommodate the
specific Allais and Ellsberg examples of Table 1, they cannot accommodate more
general departures from event separability or probabilistic sophistication (see Note
8), nor can they accommodate state-dependence type departures without additional
modification.

The second reason is that each of the above alternatives consists of a specific
Sfunctional form for the preference function W (-). Each such form comes with its
own component function and component measure (or set of component measures),
in addition to (or in place of) the classical von Neumann-Morgenstern utility func-
tion U(+) and subjective probability measure x(-). Thus, each new form involves its
own analytical “startup costs” — namely the costs of determining conditions on its
component functions or measures that characterize the standard behavioral prop-
erties of comparative risk aversion, comparative likelihood, etc. A second round of
analytical costs is incurred by the need to revisit each of the important applied topics
in choice under uncertainty (such as portfolio allocation, insurance demand, search,
or auctions) under each new form. Finally, if more than one form is deemed accept-
able, this leads to a third round of costs, namely the costs of deriving conditions
for comparative risk aversion, comparative beliefs, etc. across such forms. Given
the classical model’s tremendous head start in each of these topics, the analytical
costs of “starting over” with any new functional form seem overwhelming.
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Although functional forms are indispensable for empirical estimation, calibra-
tion and testing, it is hard to think of any other branch of economics that has
conducted so much of its theoretical analysis by the study of functional forms.
Besides the above analytical costs, this approach carries another modeling danger,
which can be illustrated by a hypothetical example from regular consumer theory
over nonstochastic commodity bundles: Say we observe violations of “linearity in
the commodities” in the form of diminishing marginal rates of substitution, and
respond by developing and analyzing (say) the Cobb-Douglas functional form for
utility. Among the theoretical implications that emerge are zero cross-price elas-
ticities of demand. But should we really be predicting zero cross-price elasticities
from the empirical phenomenon of diminishing MRS? Such unintended implica-
tions have already occurred at least once in choice under uncertainty: For many
years [Edwards (1955) through Kahneman and Tversky (1979)], the main form
used to represent nonlinearities in the probabilities was the non-expected utility
form V(P) =>_" , U(x;) -7 (p;). This form was eventually dropped when it was
found to imply violations of first order stochastic dominance preference in every
neighborhood of every lottery, a phenomenon which was not in the data it sought
to represent, and has not been observed in the data since.

The above considerations call for an approach which can accommodate general
departures from both event-separability and probabilistic sophistication, which does
not rely on a functional form, and which can retain as much of the classical analytics
of risk preferences and beliefs as possible — in other words, an approach which
“robustifies” the classical model and its analytics.

3 The calculus approach to robustness
3.1 Local and global robustification: A three-step approach

The following approach is simply an extension of the standard manner in which
calculus is used to derive local and global generalizations of linear algebra results.
In its most general terms, this approach to robustifying a given model — call it the
“classical model” — involves three steps:

Step 1. Represent the classical model so that it exhibits “constant sensitivity” to
changes in its key variables. Then represent the model’s analytical concepts,
tools and results in terms of its “sensitivity rates” to these variables.

Step 2. Define “smoothness” to establish local robustness. Define differentiability
so that non-classical models that are “smooth” in these key variables will have
“local classical approximations” and “local sensitivity rates,” thus establishing
the local robustness of the classical analytics.

Step 3. Use line integrals to establish global robustness. Construct line integrals
in the key variables, so that a smooth non-classical model’s response to any
global change will be the integrated sum of its “local classical” responses to this
change. Those classical results that do not actually require constant sensitivity
rates will then be found to be globally robust.
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line integral
approximation

line integral path integral

Figure 1. Line integral, path integral and line integral approximation

We can illustrate this approach — and an important mathematical issue we shall
encounter — for a simple result in ordinal utility theory over nonstochastic (apple,
banana) commodity bundles, namely the result that a “classical” (i.e. linear) utility
function Ur;n(a,b) = cq-a + ¢+ b will exhibit a global weak preference for addi-
tional apples if and only if its sensitivity rate to apples satisfies ¢, > 0. This result
can be locally robustified to a general smooth I/(-, -) at a given bundle (ag, by) by
means of the analogous condition on its local sensitivity rate to apples, namely that
U (a0,b0) = 0U(ag,bo)/0a > 0. Tt can also be globally robustified to a general
smooth ¢(, -), to take the form:

U(-, ) exhibits a global weak Ue(a,b) >0 ©)
preference for additional apples at each bundle (a, b)

The above-mentioned mathematical issue, which poses no problem for this ex-
ample but will prove substantial when working with subjective uncertainty, involves
the method of proving a global robustness result such as (6). The left-hand condition
in (6) is simply the property that U (a+Aa, b) > U (a, b) forall (a, b) and all Aa > 0.
If U(-, -) is smooth, then U (a+Aa, b) — U(a, b) can be exactly expressed in terms
of U(+,-)’s local sensitivity rates (i.e. partial derivatives), either by a straight line
integral from the bundle (a, b) to (a+Aa,b), or by any smooth path integral be-
tween these bundles, as illustrated by the left and middle diagrams of Figure 1. But
of the two, only the line integral can be used to prove the global robustness result
(6). The reason is that the right-hand condition of (6) ensures that each differential
movement along the straight line path has a nonnegative differential effect upon
U(-,-), so that the integral of these effects (that is, the line integral in the figure) will
be nonnegative. But even when the right-hand condition of (6) holds, the curved
middle path cannot be used to prove U (a+Aa, b) > U(a,b), since the condition
Uy(a,b) > 0ateach (a,b) is not enough to ensure that these differential effects are
everywhere nonnegative along the downward sloping portion of the path, or that
any such negative effects are guaranteed to be outweighed by positive effects along
the upward sloping portion. Intuitively, if a global robustness result like (6) is to be
proven by an exact path integral, it must be along a constant-direction path, such
as the straight-line path in the figure, and not along any curved path in the space of
commodity bundles.

There is, however, another way to prove an exact global robustness re-
sult like (6). Consider the integral in the right diagram in Figure 1. Like
the middle diagram, it involves a curved path, but unlike that diagram, it
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does not integrate the differential effect upon U(-,-) of moving in the direc-
tion of the path, but rather, integrates the differential effect of moving in the
direction of the global change. Thus if {(a(t),b(t))|t€[0,1]} is the curved
path in the middle and right diagrams, the middle path integral is given by
fol (U (a(t),b(t))-a’(t)+ Up(a(t),b(t))-b (t)] - dt, whereas the right line integral
approximation is given by fol [Ua(a(t),b(t))-Aa)-dt. Since it is not a true path
integral, this expression will not exactly equal U(a+Aa,b) —U(a,b). But with
sufficient regularity, as the path {(a(t), b(t))|t €[0, 1]} becomes arbitrarily close to
a straight line path, the line integral approximation fol [Uy(a(t),b(t)) Aa]-dt will
converge to U(a+Aa,b) —U(a,b). Since the right condition of (6) ensures this
integral is nonnegative for any path, and since any limit of nonnegative values must
be nonnegative, we obtain U(a+Aa,b) —U(a,b) > 0. Line integral approxima-
tions will prove essential for robustifying the classical model of risk preferences
and beliefs under subjective uncertainty, where the key variables will be the events,
and constant-direction paths will not exist.

3.2 Robustifying expected utility analysis under objective uncertainty

As noted, this approach has already been used to establish the robustness of much
of standard expected utility analysis under objective uncertainty.'® Since the ex-
pected utility form Vg (P) = Y., U(z;) - p; exhibits constant sensitivity in the
probabilities, we choose probabilities rather than outcomes as the key variables,
and accordingly represent each objective lottery in the form

P:{"'apz'7pm”apz'”7"'}:{pa:|w€X} @)
TEX

that is, as an outcome-indexed list of probabilities (summing to unity). The change
between any pair of lotteries P and P* can be represented in terms of the changes
in these probabilities:

PP ={...,py—par Do —Dart, Do —Parrr ... } = {Apa |z € X} (8)

reX

and changes in expected utility can be represented in terms of these probability
changes and Vgy (+)’s constant sensitivity rates {... ,U(a’), U(z"), U(z""), ...}
to these probability changes:

Veu(P*) = Veu(P) = Y U(2)-(ph —pa) = »_ U(z)-Aps  (9)
rEX reX

Given the choice of probabilities as the key variables, a smooth non-expected
utility preference function V (-) is defined as one that is differentiable in the prob-
abilities, i.e. one that satisfies

V(P*) = V(P) = Y U;P)-(p; —pa) + o|[P*=Pl])  (10)
reX

10 See the references in Note 1. The following results are from Machina (1982).
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where {U(z;P) |z € X} = {OV(P)/0py |z € X} are V (-)’s partial derivatives
(local sensitivity rates) with respect to the variables {p, |z € X'} at P, for some
choice of norm || - ||. Because of the close correspondence of (9) and (10), U(+; P)
is termed the local utility function of V() at the lottery P.

By replacing standard conditions on the expected utility sensitivity rates
{U(zx)|x € X} with the corresponding conditions on the local sensitivity rates
{U(z;P)|x € X'} of a smooth non-expected utility V'(-) at each lottery P, we can
obtain the following global robustness results:

V (-) exhibits global weak first order - U (z;P) is nondecreasing

stochastic dominance preference in x at each P
V(+) exhibits global weak risk aversion U (z;P) is concave in x
(weak aversion to mean-preserving spreads) ateach P
V*(-) is at least as risk averse as V' (+) U*(x;P) is at least as concave

(see Machina (1982, Thm.4) for specifics) < inzasU (z;P) at each P

As with the global robustness result (6), such results are proven by means of
line integrals along constant-direction paths, which in this setting consist of the
probability mixture path {P, = (... ,a-p: + (1—a) ps,...)|a € [0,1]} from
P to P*, and which generate the line integral formula

V(P*)—V(P):/ldvcga)~da:/01{ZU(x;Pa)-(pi—pm)]da (11)

0 reX

Researchers have applied and extended this approach to establish the global ro-
bustness of several other key results of objective expected utility theory, including
first order conditions for optimization, comparative statics with respect to changes
in risk, and many results from insurance theory.

The following section prepares for our application of this robustness approach to
subjective uncertainty, by (i) showing that the classical model exhibits constant sen-
sitivity in the events attached to each outcome; (ii) defining a notion of “smoothness
in the events”; and (iii) showing that while it is impossible to construct “constant-
direction paths” in the events, we can work with line-integral approximation paths,
analogous to those in the right diagram of Figure 1.

4 Robustifying the classical model: Preliminary steps

Although we shall consider more general settings in Section 6.2, the formal analysis
of this paper will be conducted within the following framework:

arbitrary space of outcomes or conse-
X={. ,z,...}

quences

set of states of nature, with uniform
5=1[s,5C R f

Lebesgue measure A(+)

algebra of events (each a finite union
E={...,E,...}

of intervals) in S
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finite-outcome act, for some £-meas-
urable!! partition {E1,... ,E,} of S

set of all finite-outcome, £-measura-
ble acts

fGOy=[zyonEy;...;x,0n E,]

' preference function and its correspon-
W()and > ding preference relation on A

We define W (-)’s outcome ranking by x* =/>/~ xifand only if W (x* onS) >/>/=
W (x on S). An event E is said to be null for preference function W (-) if W(-) is
always indifferent to the payoff assigned to E, so that W (x* on E; f(-) elsewhere)
= W(x on E; f(-) elsewhere) for all z*, z and f(-).

4.1 Event-theoretic representation of the classical model

Although a subjective act is typically viewed as a mapping f(-): S — X from
states to outcomes, it can be also represented in the form [z on f~1(x1);... ;
x, on f~1(x,)], that is, in terms of its distinct outcomes 1, ... ,, and their
associated events f~1(x1),..., f~(x,). More generally, we can represent each
act in A as an event-valued mapping f~1(-) : X — £ over the entire outcome set
X, or by analogy with (7), as an outcome-indexed partition of S:

f()={... Eo,Ew Epn,...} = {E,|zeX} (12)

zeX

where each event E, = f~1(x) is £&-measurable, and E, = () for all but a finite
number of z € X. Figure 2 illustrates this notation for an act f(-) (the solid line)
over the state space S.

X3 ™ T
- L
Ny e | TO)
S O L 2
X1 ____Jl
£ E=fx) Eo=f"(x3) Eo=f"(x) s

Figure 2. Event-theoretic representation of an act f(-) and the change f(-) — f*(-)

We can represent the change from any act f(-) to another act f*(-) in terms of
the changes — the growth and/or shrinkage — in each outcome’s event F,.. For each
x € X, we define the

1A partition {F1, ... , En} is E-measurable if E; € & for each i.
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growth set of x : AES = E' —E, = f* Ya)— fYx)

(13)
shrinkage set ofx : AE, = E, —E; = f*l(x) _f**l(x)

and represent the change f(-) — f*(-) in terms of this family {(AE}, AE; )|
x € X'} of growth and shrinkage sets, which we to refer to collectively as change
sets. Since each state in the growth set of one outcome must also be in the shrinkage
set of some other outcome, and vice versa, we have

UAEF = (JAE; = {se8|f(s) # f(s)} (14)

zeX rzeX

which we term the foral change set between f () and f*(-). Figure 2 also illustrates
the growth and shrinkage sets for the change from f(-) to the (dashed) act f*(-).

Since we retain Savage’s approach of imposing no structure on the outcome
space X, we cannot define the “distance” between a pair of acts f(-) and f*(-) in
terms of the “closeness” or “distance” between their outcomes. Instead, we base it
on the size (Lebesgue measure) of the total change set (14), and define the distance
function'?

5(f% f)=A{s € S| F*(s) # f(s)}:A{ U AE;} — A{ U AE;} (15)
reX

TeEX

and we assume each preference function W (+) is event-continuous in the sense that

sim W) = W(f()  alf()eA (16)

Like Savage’s own continuity axiom P6 (1954, p. 39), event-continuity implies
indifference between any two acts that differ only on a finite set of states, which
for the classical form Wggy (+) serves to rule out any atoms (mass points) in its
subjective probability measure u(-). However, neither Savage’s P6 nor the event-
continuity condition (16) is strong enough to ensure that p(-) will be absolutely
continuous'3 with respect to Lebesgue measure \(-), which is required for it to pos-
sess a density function v/(-) such that j(E) = [, v(s)-ds for all E. We shall ensure
absolute continuity of all measures and signed measures considered in this paper by
assuming that every preference function W (-) over A is absolutely event-continuous
in the sense that W (z1 on Ey;... ;x, on E,) is an absolutely continuous function
of the boundary points of each interval or finite interval union F;, and similarly for
the first order term in (19) below.

12 Since §(f*, f) = 0 for any acts f(-) and f*(-) that differ only on a set of Lebesgue measure
zero, &(-, -) is not a metric. It is, however, a pseudometric, since it will satisfy the triangle inequality
S(f**, f) S O(f**, f*) +6(f*%, f).

13" A measure or signed measure on S is absolutely continuous with respect to Lebesgue measure A(-)
if it assigns zero measure to every set £ C S for which A(E) =0, which rules out atoms as well as
nonatomic “singular continuous” measures such as the Cantor measure (e.g. Billingsley, 1986, pp. 427-
429; Romano and Siegel, 1986, pp. 27-28). Although Savage’s formulation implied only finitely-additive
subjective probability (1954, Sect. 3.4), we follow Arrow (1970, Ch. 2) and others and assume countable
additivity for all measures and signed measures in this paper.
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Given the above, we can represent the classical preference function as'*

Wspu (f() = /SU(f( Z/ 1(z) )

TEX 17)
Z/U Z/QSxS

zeX zeX

for what Myerson (1979) has termed the outcome-state evaluation function ¢(x, s)
= U(x)-v(s). The function ¢(z, s) — which gives the effect of receiving outcome
x in state s — is seen to fully characterize Wg gy (+)’s risk attitudes (when viewed
as a function of x) as well as its beliefs (when viewed as a function of s). Both of
these types of characterizations will be shown to be robust.

Since Wsgy(+) is seen to evaluate each outcome’s event F/, by an additive
function (i.e. signed measure) @, f B, )-ds and then sum these evalu-
ations, it is said to be event- addmve Event add1t1v1ty is the subjective analogue of
linearity in the probabilities, and is seen to imply constant sensitivity in the events —
that is, the property that W g (+)’s response to any change f(-) — f*(-) will only
depend upon f(-) and f*(-) through their change sets {(AE;, AE, )|z € X} :

Wsso (f*()) — Wssu (F() = o(z,5)-ds — | o(a,s)-ds
SEU SEU ;e;{ Bs /EL } (18)
= Z[

o(x,s)-ds —/ d)(m,s)-ds}
cex Y AET AE;
where the second line follows by subtracting |’ E:n Eng(z, s)-ds from each integral
in the first line. The Allais changes «; — a2 and a3 — a4 in Table 1 both involve
the same family of change sets, as do the Ellsberg changes vy; — 2 and v3— 4,
which is why each example constitutes a test of event additivity/constant sensitivity
in the events.

The state-dependent expected utility form Wgp EU( ) is also seen to be event-
additive, with evaluation function ¢(x, s) = U(z|s) - v

Wsppu (F()) = /5 U(fs)ls)-du(s) = 3 / dp(s)

T(z
TEX () (17),
Z U(z|s) Z/ o(x,s)
reX rzeX
and accordingly, Wsp gy (+) also exhibits constant sensitivity in the events:
WSDEU(f*(')) WS’DEU Z / qf) Z, S dS—/gb LL’ 8 dS
xEX (18)/
= Z [ o(x,s)-ds — (b(x,s)-ds}
ceX AEF AE;

14 Since we restrict attention to finite-outcome acts f(-), all sums of the form Zzex in this and the
following sections will only involve a finite number of nonzero terms.
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The following result shows that, under absolute event-continuity, the forms
Wsgu(-) and Wep gy (+) in fact characterize the properties of event-additivity and
constant-sensitivity in the events:

Theorem 1 (Characterization of event-additivity/constant sensitivity in the
events). The following conditions on an absolutely event-continuous preference
function W (-) over A are equivalent:

(a) W (-) takes the classical form Ws gy ( f 5 ( ) or the state-
dependent expected utility form Ws pEU( f s s)-du(s), for
some absolutely continuous subjective probablhty measure ,u( )

(b) W(-) is event-additive: there exists a family of absolutely continuous
signed measures {@,(-)| z € X'} such that W(f(:)) = > cr Pu(f 1 (2))

= ZmEX Dy (Ey).

(c) W(-) exhibits constant sensitivity in the events: if the changes f1(-) — fa()
and f3(-) — fa(-) involve the same change sets {(AE;, AE, )|z € X'}, then
W(f2(-) =W(f1() = W(fa(-)) =W (f3())-

4.2 Event-smoothness and the local evaluation function

Since constant sensitivity in the events is equivalent to event-additivity, a natural
definition of “differentiability in the events” is local event-additivity, that is:

Definition. An absolutely event-continuous preference function W (-) over A is said
to be event-differentiable at an act f(-) if there exists a family {&,.(-; f)|z € X}
of absolutely continuous signed measures such that

W(f*(-) - )= @ (f5  @)if) =Y _Ba(f +o(8(f%£)) (19)
reX reX
where o(-) denotes a function that is zero at zero and of higher order than its
argument.

Since the signed measures {®,(-; f) |z € X'} are absolutely continuous, they
can be represented by a family of signed density functions {¢(z, -; f) |z € X'}, so
we can express (19) as

W)~ W () / o, 3f)-ds = [ o 5:f) ds] +o(0(5)
zeX (20)

= 3| /AEﬂw»s;f)-ds [ bwsigyas] + olotra)

zeX z

Comparison with (18)/(18)’ yields that an event-differentiable W (-) will evaluate
differential changes from an act f(-) in precisely the same manner as the expected
utility forms Wsgy () and Wspgy(+), with respect to its local evaluation func-
tion ¢(x, s; f) at f(-). Thus, the differential effect upon W () of replacing outcome
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xo by x at a state s is given by ¢(z, s; f) — ¢(zo, s; f), just as it is given by the
expression ¢(z, s) — ¢(zo, s) for Wspy () or Wepgr (+). Since the local evalua-
tion function will thus only enter into (20) through its statewise differences, we can
select arbitrary x € X and additively normalize it, so that without loss of generality
we shall assume ¢(z, s; f) = 0forall s € S and all f(-) € A.

To obtain our formal results we must impose some regularity on how much the
local evaluation function ¢(x, s; f) can vary in its arguments s and f(-). Although
the space of acts A is not compact with respect to the distance function §(-, -),
our regularity conditions include the properties that a continuous ¢(z, -; -) function
would exhibit if its domain S X A was compact:

for each outcome = : ¢(z, s; f) is uniformly continuous over Sx A
for each outcome x : ¢(x,s; f) is bounded above and below on Sx A

for each pair z* >z fE [o(x* s;f) — P, s;f)]-ds is both bounded
and nonnull event £ * above and bounded above 0, uniformly in f(-)

2

We thus define a general event-differentiable preference function W (-) on A to be
event-smooth if it satisfies these properties, which can be stated more formally as:

for each x € X and ¢ > 0 there exists d, . > 0 such that |s' — s| < ..
and §(f’, f) < s implies |(z, s'; f') — P, s; )| < e

for each & € X there exist ¢, and ¢, such that ¢, > ¢(z,s; f) > ¢,
foralls € Sandall f(-) € A 1)

for each piir x* = r and nonnull F € & there exist 51*@713 > Py >0
such that @, > [ [P(x% s f)—d(x, 53 f)]-ds > Pyep p forall f(-)e A

Under event-smoothness, the local evaluation function ¢(x, s; f) can be ob-
tained by differentiating T/ (+) in the appropriate event-theoretic manner. Defining
the e-ball B, . = [s — €, s + ] about any interior state s € S, equation (20), event-
smoothness and the normalization ¢(z, s; f) = 0 imply'"”

W< z on B )W( z on B, >
b(z,s: f) = lim f(-)onS—DB; . f(-)on §—Bs .

£—0 2-¢ @2)

The (pre-normalized) local evaluation function for the form Wsgy(-)
at any act f(-) is simply ¢(z,s;f) =U(x) -v(s), and for Wspgry(:) it is
o(x, s; f) = U(x|s) - v(s). The “constant sensitivity in the events” property of these
forms is reflected in the fact that their local evaluation functions do not depend upon
the act f(-). When the other forms we have considered are event-smooth, their pre-
normalized local evaluation functions are given by:

15 Not surprisingly, (22) is similar to the classic derivative of a set-function
Lim[2(EUBs,e)— 2(E — Bs,c)]/A(Bs,e), for a function (2(-) defined over sets E C R"
(e.g., Hahn and Rosenthal, 1948, Ch.V; Jeffery, 1953, pp. 125-127).
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Probabilistically Sophisticated Non-Expected Utility: Writing Wpg(f(-)) =
V(Py,,) where Py, = (... ;z, u(f~1(z));...) is the lottery implied by f(-)
under the subjective probability measure p(-), we have

Pz, 85 f) = Ulx; Py ) v(s) (23)
where U (z; P) is the local utility function of V'(-) (from (10)).

Choquet Expected Utility:'® Writing Wenoguer (f (1) = e x U(a:)-[C(Eif)—
C(Ejf)] for f(-)’s weak and strict cumulative payoff sets Eff ={s e S|
f(s) < =} and E; = {s € S|f(s) < «}, and defining C(-)’s generalized
density c(s;E) = lim [C(EUB;.)—C(E —Bs,)]/(2-€), we have!’

o(z, s f) = U(x)-c(s;Eif) —|—UEIU(y)-[c(s;E:f)—c(s;E;f)} (24)

Maxmin Expected Utility: Writing Wiazmin(f(1) = Y ,cxUlx) -
fre(p() (f7H(x)) where 7#(f(-)) = argminer 32, e Ul2)-pr(f 1 (@),
Winazmin(f(+)) is seen to have a structure similar to that of a support function
from convex analysis.!® Thus if the measures {y,(-)|7 € T} have densities
{v:()|7 € T}, Winazmin(+)’s smoothness properties about any act f(-) will
depend upon the properties of 7*(+) at that act as follows:

If 7%#(-) is constant over some neighborhood of f(-), Wiazmin(-) takes the
classical form over that region, and we will have ¢(x,s; f) = U(z) - vy« ())(5)

If 7*(-) is not constant about f(-) but at least continuous there, a standard
envelope theorem argument implies that we will continue to have ¢(x, s; f) =
U(@) v s (5)

If 7%(-) is not continuous at f(-), Winazmin(-) is “kinked in the events” and not
event-differentiable at f(-), although it may have directional event-derivatives

Given a pair of constant acts f(-) = [z on S] and f*(-) = [z* on S], we define
the single-sweep path { f.,(-)|w € [s,3]} from f(-) to f*(-) by"

fo() = [2*on[s,w];z on (w,5]] wE [s,5] (25)

This path is illustrated in Figure 3. As w runs from s to s, the outcome x is replaced
by x* over an expanding interval [s,w] whose right edge sweeps across the state
space S at a uniform rate. Since 6(f,, f.’) = |w — w’|, event-continuity implies
that W (f,,(+)) is continuous in w.

16" For notational simplicity, this derivation will assume U (z*) # U (z) whenever x* # .

17 When working with (24), recall that since C(-) is nonadditive we will typically have [}, c(s; E) -
ds # C(E), in other words, the generalized densities c(s;Ei f) and c(s;E: f) typically do not
“integrate back” to C(Ejf) or C(E:f).

18 A function on R™ is a support function if it is the pointwise minimum or the pointwise maximum
of some family of linear functions (e.g., Rockafellar (1970, Ch.13)).

19 Note that the initial act on this path is not actually f(-) = [z on S], but rather fs(-) =
[x* on [s, s]; z on (s, 3 ]], which by event-continuity will satisfy W (fs(-)) = W(f(-)).
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N
Jfo()
B e e e &
' ! 1S
s @ K]
change sets for f(-) > f,(): change sets for f () = f4():
AE.. = AE, = [5,0] AE) = AE, = (.5]

Figure 3. Single-sweep path from the constant act f(-) = [z on S] to f*(-) = [z*on S]

Given an arbitrary & € [s,], event-differentiability implies

W0 = W(a0)= [[oatsi ods— [ o fo)dstollw—sl) 26

for all w > @, with a corresponding formula for w < @, so that W (f,,(-)) is dif-
ferentiable in w, with

- = ola* s fo) — $la, i fo) @

w=w

By event-smoothness this derivative is seen to be continuous in w, so that

W) =W(f ()= / Swﬂlw: / (Bt s b-o(n,wi )] 28)

which illustrates how W (-)’s ranking of f(-) versus f*(-) can be exactly expressed
in terms of its local evaluation function along the path {f,(-)|w € [s,5]}.

Single-sweep paths can also be constructed between pairs of nonconstant acts
f(-) and f*(-), by defining f,,(-) = [f*(-) on [s,w]; f(-) on (w,5]]. In this case,
as w runs from s to § the interval [s, w] sweeps rightward, replacing the outcome
f(w) by f*(w) at its right edge, and similar derivations yield that W (f,(-)) is
continuous in w, with dW (f,,(+))/dw = ¢(f*(w),w; fo) — ¢(f(w),w; f.,) at each
pointw € [s, ] where both f*(-) and f(-) are continuous. Since f(-) and f*(-) can
each have only a finite number of discontinuities, we obtain the general comparison
formula

W () =w(f() = / [6(f*(@),w; fo) = (f(w),w; fo) ]-dw (28)

Although single-sweep paths suffice to establish the exact comparison formu-
las (28) and (28)’, they cannot serve as a general engine for establishing global
robustness results, for the simple reason that they are not “constant-direction paths”
in the space of subjective acts. To see this, recall that an inherent property of any
constant-direction path (such as the left-hand path in Figure 1) is that the variable
changes in going from the starting point to the midpoint of the path are identical to
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the variable changes in going from the midpoint to the final point, which implies
that any constant-sensitivity function will exhibit an equal response along each half
of the path.?

However for single-sweep paths, say the path f,,(-) = [x* on [s, w]; z on (w,3]]
of Figure 3, the variable changes in going from its starting point f(-) to its mid-
point f(s15)/2(-) are the change sets AE,. = AE; = [s, (s +5)/2], whereas the
variable changes in going from f(é_H) s2(+) to its final point fz(-) are the distinct
(in fact, disjoint) change sets AE]. = AE; = ((s +§) / 2,3]. Accordingly, the
response of any constant-sensitivity function Ws gy ( f s dp(s)
over the first half of this path will be [U(x*) —U(z)]- (L (s+73) / 2]) Whereas
its response over the second half of the path will be the generally distinct value
[U(z*) = U(@)]-u(((s +5)/2,5]).2

In fact, in our framework of purely subjective acts, where the key variables are
the events { E, |z € X'} and their change sets {(AE;, AE, )|z € X'}, constant-
direction paths do not exist, for the simple reason that no family of event changes
{(AE}, AE; )|z € X} canever be applied more than once in succession. In other
words, once an event E,, has expanded by AE}" to become E, UAE], it cannot
expand by AE again, and once F,, has shrunk by AE to become E, — AE_, it
cannot shrink by AE_ again. Thus no path { f,,(-) |« € [a, @]} in A —single sweep
or otherwise — can have the property that its change sets from f, () to fiata)/2(-)
are the same as its change sets from f(,1a)52(-) to fa(-). Since we cannot prove
global robustness results by constant-direction paths as in the left diagram of Figure
1, we must use line integral approximations along paths that come arbitrarily close
to the constant-direction property, as in the right diagram of the figure.

The nonexistence of constant-direction paths between subjective acts is in dis-
tinct contrast to the case of objective lotteries considered in Section 3.2, where the
probability mixture path {P, = (... ,a-pt + (1 —a) ps,...)|a € [0,1]} from
P to P* does constitute a constant-direction path,22 and hence allows for the use
of the line integral formula (11) in establishing global robustness results. In order
to obtain a path { f,(-) | € [o, @]} from f(-) to f*(-) that comes arbitrarily close
to the constant-direction property — as in the right diagram of Figure 1 — we must
work with subjective acts f,(-) € A that come arbitrarily close to being “objec-
tive probability mixtures” of f*(-) and f(-). We present such “almost-objective”
mixtures and paths in the following section.

20 More generally, if a constant-direction path is divided into k equal portions, the variable changes
from the beginning to the end of each portion will be identical, so any constant-sensitivity function will
exhibit an equal response along each portion.

2l The response of any constant-sensitivity form Wspru (f(-)) = [U s s)-du(s) on these
two halves will be the generally distinct values fg,(g+5)/2] [U(z*|s ) — U(w\ )] - du(s) and
Jiwsmy 2 [U@Hs) = U (@]9)] - dp(s).

22 For this path, the changes from Py to P; /2 are the same as from Py /5 to Py, namely the probability
changes {... , (pk/ —py) /2, (DE —Dy) /2, (D511 —pgyir)/2, ... }. The constant-sensitivity pref-
erence function Vg (+) also exhibits the same response from Pg to Py /5 as from Py /5 to P1, namely
Veu (P*)—VEu (P)]/2.
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4.3 Almost-objective events, acts and mixtures under subjective uncertainty

In the purely subjective framework of this paper, a given event E' could be as-
signed different subjective likelihoods by different classical preference functions
Wseu(f() = [s Ul dp(s) and Wipy (f() = [ U*(f(s))-dp*(s), and
may not be a551gned any well defined likehhood at all by a preference function
such as Wenoguet (+)s Winazmin (), or a general event-smooth W (-). However, ev-
ery Euclidean state space contains a special class of events — termed almost objective
events — that approximate, and in the limit attain, the property of unanimous, well-
defined revealed likelihoods for all event-smooth W (-). Examples of such events
date back at least to Poincaré (1912), and as shown in Machina (2004), they will
arbitrarily closely approximate virtually all of the belief and betting properties of
objectively uncertain events for every event-smooth W ().
Given our subjective state space S = [s,5] C R!, define A\s = \(S) =35 — s.
For arbitrary positive integer m, partition S into the m equal-length intervals
[s,542%), ..., [s+i22 s4+(i+1)-28), ..., [s+(m—1)25 5] (29)

m

and for any interval (or finite union of intervals) o C [0, 1], define the almost-
objective event

px S = U:r;l{§+(z+w 28 }we p} (30)

that is, as the union of the linear images of @ into each of the m intervals in (29).
Thus, [0, 1] x S would be the union of the left halves of these intervals, [§,2]x S
would be the union of their middle thirds, etc. It is straightforward to show that
such events will satisfy the limiting measure property

im p(pxS) = Ap) (€29)

for every continuous-density subjective probability measure () on S, where A(-)
is Lebesgue measure over [0,1]. In this sense, the events Px S can be said to have a
limiting likelihood of \(p) for each such subjective probability measure y(-), and
hence for every probabilistically sophisticated preference function Wpg(-).

As shown in Machina (2004), this unanimous limiting likelihood property ex-
tends to every event-smooth preference function W (+), whether or not it is prob-
abilistically sophisticated, or even based on an underlying probability measure or
capacity at all. In other words, for any pair of disjoint finite interval unions g, o’
C [0,1] with A(p) > (=) M(g’), every event-smooth W (-) over A will satisfy

" on p xS T onpXxS

lim W[ z ong'xS > (=) lim W[ z*ong'xS (32)
m—00 ) e allg* s g O ) m

f() elsewhere o f(-) elsewhere
Besides unanimous revealed likelihoods, almost-objective events arbitrarily
closely approximate another property of objective rather than subjective events
— or more precisely, a property of the objective events in any Anscombe-Aumann
(1963) type objective x subjective setting — namely the property that their revealed
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likelihoods will be invariant to conditioning on any fixed subjective event E. Specif-
ically, for disjoint finite interval unions g, p’ C [0, 1] with A(p) > (=) A(p’) and
any fixed E € £, every event-smooth W (-) will satisfy

¥ on (pxS)NE r on(pxS)NE
lim W[ 2 on(p'xXS)NE| > (=) lm W| z* on(p'xS)NE | (33)
e\ f() elsewhere allz®=z "7\ f(.) elsewhere

all f(-)EA

We accordingly define the almost-objective subevents of a subjective event E by
pxE = (pxS)NE.

Let {p1,... ,©n} beapartition of [0,1] where each g; is a finite interval union.
For each set of outcomes z1, ... ,x, € X, we can define the almost-objective act

[z10np1XS;... 53, 0n 0, xS]| € A (34)

and for each set of subjective acts f1(-), ... , fu(:) € A, we can define the almost-
objective mixture

[fi(:)on p1X8;... 5 fu(-) on o, XS] € A (35)

which yields outcome z on the event E, = (p1% f1 (z)) U+ U (pn X fl(2)).

Even though almost-objective acts and mixtures are elements of the subjective
act space A, preferences over them correspond more closely to preferences over
objective lotteries and mixtures than to preferences over general subjective acts, in
two respects. First, although a general event-smooth W (-) will not be probabilis-
tically sophisticated over general subjective acts f(-), as m — oo it will be prob-
abilistically sophisticated over almost-objective acts. That is, each event-smooth
W (-) has an associated risk preference function Vyy(-) over objective lotteries
P = (z1,p1;... ;Tn, pn), such that

it W (21 0n 1S5 0n 98) = Vie{aa, Mg )i -2, M) 36)
so that as m — oo, each event-smooth W (-) evaluates an almost-objective act
solely according to its outcomes x1,... ,x, and the limiting likelihood values
A(p1),-.- , A(pn) of their events. The second property is that as m — oo, all
event-smooth W gy () as well as all event-smooth Wsp gy (-)* will be linear in
almost-objective likelihoods and in almost-objective mixture likelihoods:

n
TAE}HOOWSEU(M on 1xS;... i, on PpxS) = Z;/\(@z)U(ﬂ%)

(37)
11_131 Wsppu (z1 0n p1x5;... 2, on p,x5) = Z/\(Wz)/U(l“z\S)dM(s)
and

23 Recall that while state-dependent expected utility is inherently linear in purely objective likelihoods,
and also in objective mixtures of subjective acts, it is generally not linear in the subjective likelihoods
of a general subjective act.
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lim Wopu(fi(+) on 18- fn(-) on pnx S) = Z/\ i / (5))-dp(s)
N (38)
Jim W FiC)on v i £ on ,55) = A0 [V}t
i=1

To summarize, almost-objective events, acts and mixtures exhibit the following
properties:>*

e as m — oo, all event-smooth W (+) assign unanimous revealed likelihoods to
almost-objective events, which are independent of conditioning on fixed sub-
Jjective events

e as m — oo, all event-smooth W (-) are probabilistically sophisticated over
almost-objective acts

e as m — oo, all event-smooth Wsgy (-) and Wsppgy (-) are linear in almost-
objective event likelihoods and in almost-objective mixtures of subjective acts

Recall that global robustness results can only be proven by line integrals along
constant-direction paths (as in the left diagram of Figure 1), or by line integral
approximations along paths that converge to the constant-direction property (as
in the right diagram). Although we have seen that constant-direction paths do not
exist in the space of subjective acts, as m — oo the almost-objective mixture path
between acts f(-) and f*(-) — that is, the path { f7"(-) |« € [0, 1]} defined by

S = [f*(-)on0,a]xS; f(-) on (a, 1] x S| (39)

will converge to the constant-direction property, and hence allow for global robust-
ness proofs.

To see this, consider the almost-objective mixture path from the con-
stant act f(-) = [zonS] to f*(-) = [z*onS], that is, the path defined
by fi'(-) =[z*on[0,a]xS; z on (a,1]xS] and illustrated in Figure 4. Al-
though the change sets in going from the starting point of this path to
its midpoint (namely AE}. = AE; = [0, 3]x S) are distinct (and even dis-
joint) from the change sets in going from its midpoint to its final point
(namely AE. = AE; = (3,1]xS), the above results imply that as m — oo
they will be viewed as being virtually equivalent to each other by every
continuous-density probability measure sx(-) and every event-smooth W(-).2
Since (38) implies 1in1m_>oo Wegu (fI ()) =a-U(z*) + (1 a) U(x) and
limyn 0o Wspru (f5(1) = a- [gU(a*|s)-du(s) + (1—a)- [ U(z]s)-du(s),
as m — oo all preference functions that exhlblt constant sensitivity in the events
(namely, all Ws gy () and Wspgu (+)) are seen to respond at a constant rate along
this path.

24 See Machina (2004) for proofs of these properties and other aspects of almost—objective uncertainty.

25 More generally, as m — oo the change sets from the act f7(-) to f7 T Aq(") will be viewed as
being equivalent to the change sets from f%, 5, (+) 0 fJ% 5. 5, ("), and similarly for all equally-spaced
acts along such a path.
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Figure 4. Almost-objective mixture path from f(-) = [z on S] to f*(-) = [z*on S]

Since the above properties will also hold for the almost-objective mixture path
(39) between any pair of nonconstant acts f(-), f*(-) € A, almost-objective mix-
ture paths can be said to arbitrarily closely approximate the property of being
“constant-direction in the events.” The following result from Machina (2004) shows
that line integral approximations along such paths — that is, integrals that eval-
uate (in the same manner as (18)/(18)") the effect of the full global change sets
{(AE}, AE; )|z € X} at each point along the path — will indeed converge to
W (-)’s exact global evaluation W (f*(-)) — W (f(-)). Accordingly, such integrals
can serve as the engine for establishing the global robustness of the classical ex-
pected utility/subjective probability model:*

Line Integral Approximation Theorem (Machina, 2004). If W(-) is event-
smooth, then for any acts f(-), f*(-) € A and any € > 0 there exists m. such that
for each m > m., W(+)’s path derivative along the almost-objective mixture path
{F ()l ae 0,11} = {1/*() on [0,a)x S: /() on (a, 1 S]|a € [0, 1]} from
f(-) to f*(-) exists and satisfies

WZUA +¢(x,s;f&”)'d5*/A

sentAB By

gb(ac,s;f;ﬁ)ds] <e (40)

at all but a finite set of values of «. This implies the line integral approximation

formula
W(f*() =W (f(-)

Bl e,
= /OIZ [/Eﬂ(x’é’;f?)'ds_/]g¢(w7s;fgl)-ds}-da
zeX x E

qb(x,s;f&"’)-ds} -da (41)

26 In  Machina (2004), the bracketed terms in (40)/(41) are equivalently expressed as
(Do (f* M (2); f) — P (f 1 (@); fO))-
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5 Global robustness of the classical analytics

In this section we apply the robustness approach of Section 3.1 and the Line In-
tegral Approximation Theorem to show that the fundamental analytical results of
the classical expected utility/subjective probability model are globally robust to
general event-smooth departures from both the expected utility hypothesis (event-
separability) and the hypothesis of probabilistic sophistication. Section 5.1 estab-
lishes the property of outcome-monotonicity and robustifies the classical formula
for outcome derivatives. Section 5.2 robustifies the classical characterization of
global probabilistic sophistication. Section 5.3 robustifies the classical character-
izations of comparative subjective likelihood and relative subjective likelihood to
individuals who are not necessarily either expected utility maximizers or proba-
bilistically sophisticated. Section 5.4 robustifies the classical characterization of
comparative risk aversion, again to individuals who are not necessarily expected
utility maximizers or probabilistically sophisticated.

5.1 Outcome-monotonicity and outcome derivatives

A preference function W (-) is said to be outcome-monotonic if the outcome rank-
ing x* > x implies W (z* on E; f(-) on ~E) > W(x on E f()o n NE) for all
f(-) and all nonnull E.*' For the classical form Wsgu (f(-)) = [ U( du(s)
this property follows automatlcally, smce xT* - x 1mp11es U (x*) > U ( ) so that
JpU@*)-du(s)+ [, U )-du(s) > [ U(x)-du(s)+ [ U(f(s))-du(s)
for all f ( ) and all nonnull E For the state- dependent form Weppu(f(+)) =
JsU( s)-du(s), although the condition “z* > x implies U (z*|s) > U(z|s)
for all s” 1s sufficient to imply outcome-monotonicity, it is not necessary for
this property, since an absolutely event-continuous Wspgy (+) can be outcome-
monotonic yet still satisfy U(z*|s) = U(z|s) at isolated states s, even isolated
states s with positive subjective density v(s). For a general event-smooth W (-),
the third of the event-smoothness conditions (21)/(21)" — namely that for each
x* > 2 and nonnull E the local evaluation term [, [¢(x*, s; ) —¢(x, s; f)]-ds
exceeds some positive .. ,  for all f(-) —is likewise sufficient to ensure that
W (-) is outcome-monotonic, though again it is not necessary. To prove sufficiency,
consider arbitrary z* >~ x, f(-), and nonnull E, and let {f"(-)|a € [0,1]}3°_,
be the almost-objective mixture paths from the act [z on E; f(-) on ~E] to
[z* on E; f(-) on ~ E]. The Line Integral Approximation Theorem and the third
condition of (21)/(21)’ then imply

W (z*on E; f(-) on ~E) — W (z on E; f(-) on ~E) =
(42)
1
tin [ [ [t s ) = dlasi )] dseda > By > 0
E

m—00 0

27 We adopt this strict preference/strict inequality definition of outcome monotonicity, rather than
a weak preference/weak inequality version, in order to obtain a tighter connection between betting
preferences and beliefs.
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In the case of a real-valued outcome space X C R!, a preference function
W (-) is said to be outcome-differentiable at an act f(-) if it possesses a variational
derivative — that is, an absolutely continuous signed measure ¥ (- ; f) such that

W(f*()=W(f()) = / [F#(s) = f(s)]-a®(s; ) + o([[f*() = FCII)
s (43)
= [0 = ) wtss 1) -ds-+ o{lL£40) = O
where |[/5(-) = f()|| = sup,eslf5(s) — f(s)], and (5 f) is the density of
¥ (-;f). When an absolutely event-continuous Wsgy (-) or Wspgu(+) is out-

come-differentiable, its variational derivative is linked to its evaluation function
&(-, ) by the following formulas, which hold at each continuity point § of f(-) :

for Wspu () : ¢(3f) = U'(f(3)) -v(8) = ¢2(f(3),8)
for Wesppu(-) : ¥(8 f) = U'(F(3)|8) - v(3) = ¢x(f(3),3)

(44)

where ¢, (z,s) = 0¢(x, s)/Ox. This generates the outcome-derivative formulas

aWSEU<J;E) gE Ng) E/EU’(:%).V(S).ds

=2

OWSDEU(af;(E,) 22 Ng) E/EU’(J@‘S).V(S)-CZS

E/qbw(fc,s)-ds (45)
E

=T

An event-smooth, outcome-differentiable W (-) is said to be jointly outcome-
event smooth at f(-) if the expression W (f(8)+y on [§—e,, §+¢p); f(-) elsewhere)
is twice continuously differentiable in (v, €4, €p) about (0,0,0) at each continuity
point § of f(-). The following result globally robustifies the classical outcome-
derivative formulas (44) and (45), by showing that they extend to the local evaluation
function ¢(-, -; f) of any jointly outcome-event smooth W (-).

Theorem 2 (Outcome derivatives). If an event-smooth W (-) is jointly outcome-
event smooth atan act f(-) € \A, then its variational derivative and outcome deriva-
tives at f(-) are linked to its local evaluation function by the formulas

at each continuity

¢(§af) = ¢z (f(§),§7f) pOiIltéOf f() (44)/
aw( roon E) ) all &€ X )
f(:) on ~E = /E@C (,; f)-ds all EC f~1(&) (45)

=T

where ¢ (z, s; f) = 0¢(x, 5; f) /O
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5.2 Characterization of probabilistic sophistication

An absolutely event-continuous expected utility preference function
Wsgu(-) or Wspgru(-) will take the probabilistically sophisticated form
Wps(zyon Eq;... ;x0n Ey) = V(zy, w(Er); ... 52y, w(Ey,)) for some sub-
jective probability measure p(-) with density v(-) if and only if it is state-
independent — that is, if and only if its z-normalized evaluation function takes the
multiplicatively separable form?3

d(x,5) = U(x)-v(s) allz e X,s€S  (46)

That (46) implies probabilistic sophistication is clear. To see that it is in turn implied
by it, observe that for each = > z, z-normalization, probabilistic sophistication
and outcome-monotonicity?’ imply

x on E’] [mon E"

o | Bu(E) ") @

/Eié(x,s)ds > E?(x,s)ds(:» Lj on ~F
Thus for each x > x, [,, #(x, s)-ds is an increasing transformation of 1.( E), which
by additivity implies [, ¢(z, s)-ds = U(z)-u(E) for some U(x), yielding (46). A
similar argument holds for each z < z and each z ~ z.

As seen by (23), the classical characterization of global probabilistic sophisti-
cation by a multiplicatively separable evaluation function will extend to a general
event-smooth preference function W (-) in the following manner:

e W(-)’slocal evaluation function ¢(z, s; f) = U(z;Py,,)-v(s) can now depend
upon the act f(-), though only through its local utility term U («; Py, ), and not
its state-density term v/(s)

e the local utility term U (z; Py ,) can only depend upon f(-) through that act’s
implied outcome lottery Py, = (... 5z, u(f~1(x));...)

Formally, we have

Theorem 3 (Characterization of probabilistic sophistication). An event-
smooth preference function W (-) takes the probabilistically sophisticated form
Wps(zion Ey;... 5z 0n Ey) =V (e, w(Er);. .. 2, w(Ey)) for some sub-
jective probability measure p(-) with density v(-) if and only if its z-normalized
local evaluation function takes the outcome-state separable form

qS(x,s;f) = U(z;Pyp) - v(s) all zeX,s€S8, f(-)e A (48)

for some function U (x; P), where Py, = (z1, 1(E1); ... ;@n, u(Ey)). In such a
case, U (x; P) will be the z-normalized local utility function of V(-) at P.3°

28 If the evaluation function ¢(z, s) is multiplicatively separable for some choice of normalization
outcome z, it will be so for any choice of normalization outcome, and similarly for any local evaluation
function of the form ¢(x,s; f) = U(x;Py,,,) - v(s) as studied below.

29 See Grant (1995) for a treatment of probabilistic sophistication without the assumption of outcome-
monotonicity.

30 For standard “integrability” reasons, (48) should not be taken to imply that an arbitrary func-
tion U*(z;P) can necessarily serve as the local utility function of some V*(-), or as part of
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Note that when an event-smooth W (+) is probabilistically sophisticated, its sub-
jective density v(+) can be recovered from its local evaluation function at any f(-)
by the formula v(s) = [p(z*, s f) — d(x, 55 f)]/ [slb(a* wi ) — b, w; f)]-dw

for any pair of outcomes z* ~ z.

5.3 Characterization of comparative and relative subjective likelihood

In the classic objective approach of von Neumann-Morgenstern, additive numerical
likelihoods are specified as part of the objects of choice, and the individual is
assumed to adopt these beliefs. In the subjective approaches of Savage and Machina-
Schmeidler, uncertainty is represented by events or states of nature, but we impose
enough conditions on subjective betting preferences to imply the existence of an
additive numerical subjective likelihood for each event. In an Ellsberg urn, some
events (namely “red”) possess numerical likelihoods, but betting preferences are
inconsistent with the existence of numerical likelihoods over other events (‘“black”™
or “yellow”).

Although Ellsberg urns illustrate the fact that an individual can possess numer-
ical likelihood beliefs for some events but not others, they fall short of displaying
this in a completely subjective setting, since the numerical likelihoods that do exist
are exogenously specified (“30 of the 90 balls are red”) rather than inferred from
betting preferences. It is thus worth behaviorally characterizing the phenomenon of
“partial probabilistic sophistication,” by obtaining a completely subjective charac-
terization of classical (i.e. probabilistic) likelihood beliefs, likelihood comparisons,
and likelihood ratios over some events or pairs of events, in a setting where additive
revealed likelihoods over other events (i.e. complete probabilistic sophistication)
need not exist.

Given an outcome-monotonic preference function W (), we define its revealed
comparative likelihood relation A =y(>;) B over pairs of disjoint events by the
betting property

z* on A x onA
W| z onB >(>) W[ z* onB (49)
. llz* > .
f() elsewhere aflllf(_)eA f() elsewhere

that is, if for any pair of non-indifferent outcomes, W (-) always prefers staking the
more preferred outcome on A and the less preferred outcome on B, rather than the
other way around.

Under probabilistic sophistication and event-continuity, the comparative likeli-
hood relation will be complete and transitive, and A 3=, B will be equivalent to each
of the following betting properties over subjective partitions, or almost-objective
subevents, of A and B:

the local evaluation function of some W*(-), probabilistically sophisticated or otherwise. By anal-

ogy, a function G(z1,...,2n) on R™ is non-decreasing if and only its partial derivative functions
g1(#z1,--. ,2n),..- ,9gn(21,... , zn) are nonnegative, although nonnegativity of an arbitrary set of
functions g7 (21,...,2n),... ,9h(21,... ,2n) does not necessarily imply they are the partials of

some G*(z1,... ,2n).
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Existence of Dominating Partitions: For each n, there exist partitions { A1, ... ,

A} of Aand {By,... ,B,} of B such that A; =, B; for each pair A;, B;

Nonexistence of Reverse-Dominating Partitions: All partitions {Ay, ..., A,} of
Aand {By,...,B,} of Bsatisfy Ay »=¢ Bj for at least one pair A;, Bj/

Comparative Likelihood over Almost-Objective Subevents: For each finite interval
union p C [0,1], as m — oo the almost-objective subevents p X A and p x B
satisfy px A =y pxX B

We can extend the comparative likelihood relation to nondisjoint events by
defining A =, (>~¢) B < (A—B) =4 (>¢) (B—A), in which case it will exhibit
the monotonicity property ADB = A»>;B and the disjoint additivity property
A =i (=) B= (AUC) =4 (=) (BUC) whenever ANC = BNC = .

Under probabilistic sophistication and event-continuity, we can also define the
relative likelihood L4 p of a pair of disjoint events A and B by the following
equivalent betting properties, the last of which compares bets on subjective versus
almost-objective partitions of a common event:

Existence of Dominating Partitions: For each rational value £ < L 4, there exist
partitions {44, ... , A, tof Aand{Bs, ..., B,,} of Bwithn,/n, = L, such
that A; > B, for each pair A4;, B;

Nonexistence of Reverse-Dominating Partitions: For each rational value £ <
L4 p, all partitions {A4;,...,A,,} of A and {By,...,B,,} of B with
ng/ny = L satisfy Ay =4 Bj, for some pair A;/, Bj/

Relative Likelihood of Almost-Objective Subevents: For each pair of finite inter-
val unions ., pp C [0, 1] with the reciprocal likelihood ratio A(p,)/A(ps) =
1/L4,B,as m — oo the almost-objective subevents o, x A and p,x B satisfy
Pax A~ o B

Comparison of Subjective versus Almost-Objective Partitions: For all dis-
joint g, pp C [0, 1] with the same likelihood ratio A(p4)/A(op) = L4,B, as
m — oo the individual is indifferent between betting on the events in the sub-
Jective partition {(pa U pp) X A, (pa U gp) X B} versus the events in the almost-
objective partition { p,x(AUB), pyx(AUB)} of the event (p, U pp)x(AUB)

Of course under probabilistic sophistication, the comparative likelihood relation
A = B is equivalent to ;1(A) > u(B), and relative likelihood £ 4 g is given by
1(A)/u(B). Since the local evaluation function of a probabilistically sophisticated
preference function takes the form ¢(z, s; f) = U(x; Py,,)-v(s), the conditions
w(A) > p(B) and p(A)/u(B) = L, p are respectively equivalent to

/ [b(a*, 5 f) — Bl 5 f)]-ds > / [b(x*, 5 f) — dlar,5: f)]-ds (50)
A alz*>=x JB

all f(1)eA

-z

all f(-)eA

/A [¢<x=*:s;f>—¢(x,s;f>}-ds/ /B (ot sif)-dlws s = Lan 6D

Intuitively, (50) states that the individual is always at least as sensitive to replacing
an outcome z by a preferred outcome z* over the event A than to making the same
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replacement over B, and (51) states that the ratio of these sensitivities takes the
same value £ 4 g for all such outcomes pairs.

However in the absence of probabilistic sophistication, the comparative likeli-
hood relation =, need not be complete, subjective likelihoods or likelihood ratios
need not exist for all events, and even when two events do satisfy the betting property
(49), neither disjoint additivity nor the associated partition properties necessarily
follow from this fact.’! Nevertheless the above characterizations are robust, in the
sense that a general event-smooth ¥ (-) — even though it may not be additive over
general subjective partitions — will exhibit the comparative likelihood condition
(50) or the relative likelihood condition (51) for a pair of subjective events A and
B if and only if it satisfies the above betting properties over all partitions and
subevents for which event-smooth preferences are inherently additive, namely all
almost-objective subevents® and all small-event partitions.

The concepts of comparative likelihood (“A is at least as likely as B”) and rela-
tive likelihood (“A is £ 4, p times as likely as B”) are both special cases of the more
general comparative condition “A is at least £ times as likely as B,” which may be
meaningful even when A and B are both ambiguous and neither possesses a sub-
jective likelihood on its own. The local evaluation function conditions (50) and (51)
are also both special cases of a common condition, namely condition (52) below.
The following result thus serves to jointly robustify the classical characterizations
of comparative subjective likelihood and relative subjective likelihood:

Theorem 4 (Characterization of comparative and relative subjective likeli-
hood). For any event-smooth preference function W(-) over .4, the following
conditions on a pair of disjoint nonnull events A, B € £ and value £ € (0, c0) are
equivalent:

(a) Local likelihood ratios: W (-)’s local evaluation function satisfies

/ [¢<xﬁs;f>¢<z,s;f>]~ds/ [t sn-swsnlas > £ G
4 B d’fllljf*)za

(b) Existence of dominating small-event partitions: For each pair x* > x,
act f(-) € A, rational value £* < £ and ¢ > 0, there exist e-partitions
{A41,... A, yof Aand {By,... , By, } of B, with n,/n, = L*, such that

3 Thus, in an Ellsberg urn with 10 red balls, 10 black balls, and 22 yellow or purple
balls in unknown proportion, an ambiguity averse individual may exhibit the likelihood rank-
ing (yellow U purple) >, (red U black), but also yellow <, red, yellow <, black, purple <, red and
purple <, black, which violates nonexistence of reverse-dominating partitions.

32 By way of analogy, whereas most individuals would assign the well-defined likelihood ranking
A >, B to the events A = (yellowUpurple) versus B = (red Ublack) of the previous note, most
would probably nor satisfy the associated betting properties for the subjective partitions {A1, A2}
= {yellow, purple} and {B1, B2} = {red, black}, but most probably would satisfy them for the ob-
Jective partitions {Ag, AT} = {A Nheads, A N tails} and { By, Br} = {B N heads, B N tails}
generated by some fair (i.e. 50:50) coin.

3 A partition {E1, ... , En} is said to be an e-partition if \(E;) < & for each i.
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z* on A; x on A;
Wl = onbB; > W| x* on B; for all A;, B; (53)
f(-) elsewhere f() elsewhere

(c) Nonexistence of reverse-dominating small-event partitions: For each pair
x* = x, act f(-) € A and rational value L* < L, there exists some & > 0
such that all e-partitions {Ay,... , 4, } of Aand {By,...,B,,} of B with
ng/np = L* satisfy

x* on Ay x on Ay
Wl x onBjy > W\ x* on By for some Ay, By (54)
f(-) elsewhere f(-) elsewhere

(d) Comparison of almost-objective subevents: For all finite interval unions
P ]
©a, ©b C [0,1] with A(pa)/Aps) = (>)1/L, the almost-objective subevents
Pax A and pyx B satisfy>*

x* on pgx A T oonpgxA
lim W| z ongyxB >(>) lim W| z* ongyxB (55)
e f(-) elsewhere / all z*>=z "7 f(-) elsewhere

all f(-)€A

(e) Comparison of subjective versus almost-objective partitions: For all disjoint
finite interval unions g, pp C [0, 1] with A(pg)/A(ps) = (<) £

x* on (pUpp)x A x* on pux (AUB)
lim W| 2 on(pUps)xB | >(>) lim W[ = ongpyx(AUB) | (56)
"7\ f() elsewhere allz” =2 ™7\ £(.) elsewhere

allf () eA

In such a case, we say that W(-) reveals A to be at least L times as likely as B,
and reveals B to be no more than 1/ L times as likely as A.

Theorem 4 can be used to generate the following additional characterizations
of subjective beliefs in the absence of probabilistic sophistication:

Conditional likelihood: Given nonnull events A C B where neither may have a
well-defined likelihood, we say that the conditional likelihood of A given B is at
least Lif W (-) reveals Atobe atleast £/(1 — £) times as likely as B — A. This
will be equivalent to the local evaluation function condition [, [¢(z*,s;f)—
P(x,s;f)]-ds [ [5[p(x*,5:f)—p(2,5:f)]-ds>L for all z*>x and all f(-)€A,
equivalent to Theorem 4’s almost-objective subevent property (d) provided g,
and gy, are disjoint (so the bets in (55) will be well-defined), and equivalent to
Theorem 4’s partition properties (b) and (c) for partitions { A1, ... , 4, } of A
and {Ay,...,A,,,B1,...,By,} of Bwithng/(n,+np) = L* < L.

3 When £ > 1, setting po = pp = [0, 1] in (55) yields the comparative likelihood betting property
(49).
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Comparative numerical likelihood: Given an event E which is ambiguous and
hence without a well-defined likelihood, we can still define it as having
a likelihood of at least L if its conditional likelihood given the event S is
at least £. This will be equivalent to local evaluation function condition
Julo(a®, s: f)—o(x, s: f)]-ds/ [[p(a*, 5: f) — b, 5; f)]-ds > £ for all
x* > x and all f(-) € A, and to the corresponding versions of the subevent
and partition properties of the previous paragraph.

Interpersonal comparative likelihood: Even if neither W (-) nor W*(-) assigns
a well-defined likelihood to an event E', we can still say that W*(-) reveals
E 1o be at least as likely as does W (-) if their local evaluation functions
sty [0 o0)~ 00 s | [Sl94(0 1) i s 2
jE (&, 8 f)—d(x, 85 f)] ds/fs (Z,8; f)—d(x, 85 f)]-ds for all & > x
and all f(-) € A, Wthh will be equivalent to the interpersonal versions of
the above betting and partition properties.

. . . . . . . . 5
5.4 Characterization of comparative risk aversion under subjective uncertainty>®

We motivate our characterization of comparative risk aversion under subjec-
tive uncertainty by recalling that notion in the objective case: Given three
outcomes z”/ > x’ > x, an objective lottery P is said to differ from P by an
x < ' — 2" probability spread if P is obtained from P by reducing the proba-
bility assigned to z’, and increasing the probabilities assigned to both x and z”.
A preference function V*(-) is then said to be at least as risk averse as V() if
V(P) >V (P) = V*(P) > V*(P) whenever P differs from P by such a spread,
or equivalently, if V*(P) > V*(P) = V(P) > V(P) whenever P differs from P
by such a spread. The notion of comparative risk aversion as comparative tolerance
of probability spreads (both three-point and more general) underlies the expected
utility and non-expected utility characterizations of Arrow (1965), Pratt (1964),
Machina (1982, Thm. 4) and others.

For a parr of classical preference functions W gy ( = [U du(s)
and WSEU fs U*(f(s))-du*(s) or state- dependent functlons WSDEU(f( )
= [ U( s)-du(s) and Wip gy (1) = [ U*(f(s)]s)-du*(s) in a setting of

ob]ectrve X subJ ective uncertainty, comparative rrsk aversion over objective lotteries
is characterized by the condition that U*(z) is at least as concave a function of x
as U(x), or that [¢U*(x|s) - du*(s) is at least as concave in z as [U(z[s) - du(s).
Thus in each case, comparative risk aversion is determined by the comparative
concavity (as a function of x) of the integrated evaluation function |, s O, 8)-ds,
which reduces to U (x) for Wspy (-), and to [ U(x|s)-du(s) for Wspru ().
Since the lotteries described in the previous paragraphs were all objective, it
follows that the individuals whose risk attitudes were being compared both agreed

35 Although we continue to assume a completely arbitrary outcome space X, the discussion and
results of this section will be restricted to pairs of preference functions W (-) and W*(-) that share a
common outcome ordering >=. Other characterizations of risk aversion and comparative risk aversion
under subjective uncertainty include those of Yaari (1969), Montesano (1994a,b, 1999a,b), Grant and
Quiggin (2001) and Nau (2003).
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on the likelihoods involved in any x < x’ — 2’ spread they were offered. On the
other hand, while a subjective act f(-) = [z” on A;z on B; fo(-) elsewhere] can
be said to differ from f(-) = [z' on AUB; fo(-) elsewhere] by an x + 2’ — 2"
subjective spread, there is no guarantee that the more risk averse individual will
always be more averse to such a spread, since the two individuals’ attitudes toward
such spreads can also be affected by their respective likelihood beliefs over the
events A and B. Thus, in extending the standard characterization of comparative
risk aversion from objective to subjective uncertainty, it will be necessary to work
with subjective spreads whose evaluations only reflect interpersonal differences in
risk attitudes, and do not reflect any interpersonal differences in event likelihoods
— including interpersonal differences in the existence of such event likelihoods.

Under event-smoothness, there are two types of subjective spreads whose eval-
uations reflect features of risk attitudes but not beliefs. The first are those in which
A and B are taken from the class of events for which all event-smooth prefer-
ence functions exhibit identical limiting likelihoods, namely the class of almost-
objective events. Recall that as m — oo all event-smooth preference functions will
exhibit limiting likelihoods for the events o, xS and ;X S, corresponding to the
values A(p,) and A(pyp). Given outcomes z” > 2’ > x and disjoint finite interval
unions gq, pp C |0, 1], we thus say that the act f,,, () = [z” on ©axXS;z on Ppx S;
fo(-) elsewhere] differs from f,,,(-) = [z on (paU gp) X S; fo(+) elsewhere] by an
x < x' — 2" almost-objective spread. Since all event-smooth preference func-
tions will agree on the limiting likelihoods involved in such spread, we would
expect that if a more risk averse function W*(+) had a limiting preference for such
a spread, so too would any less risk averse W(-).

The second category of spreads whose evaluations reflect features of risk atti-
tudes but not beliefs are those in which A and B are created out of small subjective
events {F1,... ,E,} which an individual considers to be “locally-exchangeable”
for the outcomes in question. Given outcomes =’ > z’ > x, act f(-), and real
value L € (0,00), we say that W (-) is willing to accept small-event x < x'— "’
spreads about f(-) at any odds ratio greater than L, if for any n,,n; with
ng/np > L and any € > 0, there exists an e-partition {E1, ..., E,} of S such
that if A is the union of any n, of these events and B is the union of any n;, others,
then W (z" on A;x on B; f(-) elsewhere) > W (z' on AU B; f(-) elsewhere).
Although a different preference function W*(-) would generally require a differ-
ent locally-exchangeable partition {Ef, ... ,E*.} to exhibit such a property, we
would expect that, relative to their respective partitions, if a more risk averse W*(-)
is willing to accept small-event x < 2’ — 2’/ spreads about f(-) at any odds ratio
greater than some value £, so too would any less risk averse W (-).

Under event-smoothness, these three notions of comparative risk aversion —
comparative concavity of the integrated local evaluation functions [¢ ¢(x, s; f)-ds
and f s ®*(x,s; f)-ds, comparative attitudes toward almost-objective spreads, and
comparative attitudes toward small-event spreads — will turn out to be equivalent,
and will have two additional implications.

The first additional implication involves the individuals’ risk preference func-
tions Viy«(-) and Viy (-), which from (36) represent their limiting preferences over
almost-objective acts [x1 on p; 33,5; ... Ty 0N p";ng} whether or not the individ-



34 M.J. Machina

uals are probabilistically sophisticated. If W*(-) is at least as risk averse as W () in
any of the above three equivalent senses, it will follow that Vyy-«(-) will be at least as
risk averse as Vyy (+), in the standard sense of comparative risk aversion for lottery
preference functions as stated in the first paragraph of this section. But while this
property is implied by the above three notions of comparative risk aversion, is it not
strong to imply them. The reason is that the family of almost-objective acts is too
small (and non-dense) a subset of the family .4 of subjective acts, so comparative
risk aversion over almost-objective acts is not strong enough to imply comparative
risk aversion over general subjective acts in the above three senses.

The second implication involves spreads in which A and B are general
subjective events, but where W*(-) and W (-) happen to agree on their likelihoods
— even though they may disagree on the likelihoods (or have no likelihoods)
for other subjective events. From Theorem 4 and its follow-up definitions,
we can say that W*(-) and W(-) each assign a likelihood p, to A and py
to B if fA ¢* (2,85 f) — d*(x, 55 f ds/fs [0*(2, 55 f) — d*(x,5;f)]-ds and
Jalo(,s5f) <Z)(x s;f)]-ds/ [go(Z,s;f) = p(x,s;f)]-ds both equal p,
and if fB (%, 8;f) — d*(x, s; f ds/fs [¢*(2,s;f) —¢*(x,s;f)]-ds and
Jplo(@, s f) qb(x,s N]-ds/ [sd(Z,s;f) — d(x,s;f)]-ds both equal py,
for all £ > = and all f(-) € .A. Given such events A and B and outcomes

"= x’ > x,if the more risk averse W*(-) prefers the subjective spread from f(-)
= [/ on AUB; fo(-) elsewhere] to f(-) = [z” on A; z on B; fo(-) elsewhere],
then so will the less risk averse W (-). We can generalize this notion by replacing
the identical likelihood requirement by the condition that W*(-) assigns A and
B likelihoods of at most p, and at least py,, and W (-) assigns them likelihoods
of at least p, and at most p,. Once again, while this property will be implied by
the above three equivalent notions of comparative risk aversion, it is not strong
enough to imply them.

We formalize the above discussion by:

Theorem 5 (Characterization and implications of comparative risk aversion
under subjective uncertainty). The following conditions on a pair of event-smooth
preference functions W*(-) and W (-) over .A with a common outcome ordering =
are equivalent:

(a) Comparative concavity of integrated local evaluation functions: At each
f() G A, W*(-)’s and W(o)’s integrated local evaluation functions
Js @*(x,s;f)-ds and [s @(x,s;f)-ds satisfy

/ngb*(x,s;f)-ds = W(/gd)(:r,s;f)ds) (57)

allze X
f . . f . . 36
Oor some 1mcreasing concave unction Pf .

(b) Comparative risk aversion over almost-objective spreads: For all '/ = 2’ > x,
all f(-)€.A and all disjoint nondegenerate finite interval unions o, o5 C [0, 1]
36 As in Pratt (1964, Thm. 1), this is equivalent to the condition that [ [[s ¢*(2",s; f)

— Jo 6@, 5 1) - dsl/ [ 60", 5 ) - ds — [ 6 (@ 5i ) ds] < ([ ba"si ) ds
Js o' s f) - ds]/[[g d(2,s; f) - ds — [g d(x,s; ) - ds] forall '’ = &' = & andall fC )
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z” on pux S / Uor)x S
lim W*{ z ongyxS | > lim W*( @' on (pal o) )

m—00 F(-) elsewhere m—00 f(-) elsewhere
= B (58)
2 on xS 2 on (
: : PaUp)% S
| 1 m
meses Wl @ ongxS | > myeo W(f() elsewhere )

f(-) elsewhere

(¢) Comparative risk aversion over small-event spreads: For any z' = 2/ = x,
f(-)e Aand L€ (0,00), if W*(-) is willing to accept small-event = <z’ — x”
spreads about f(-) at any odds ratio greater than £, then so is W (-).

In such a case, we say W*(-) is at least as risk averse as W (+). These conditions
in turn imply:

(d) Comparative risk aversion over almost-objective acts: If Vyy«(-) and Viy (+) are
W#(-)’s and W (-)’s associated preference functions over lotteries as defined
in (36), then VW*( ) > Vg (P) = Vi (P) > Viy (P ) P) whenever P differs from
P by an x < 2’ — x”/ probability spread for some z”/ = 2’ = x.

(e) Comparative risk aversion over likelihood-adjusted spreads: For each pair of
disjoint events A, B, if W*(-) assigns A and B respective likelihoods of at
most p, and at least p,, and W (-) assigns them respective likelihoods of at
least p, and at most p;, for some p,,py € (0,1), then

:L,// on A
W#*| z on B >W*( x! 0nAUB>
f(-) elsewhere f(-) elsewhere
- (59)
x// on A /
z’ on AUB
w B W
() s g (f ) elsewhere)

f(-) elsewhere

forall 2" = 2’ = x and all f(-) € A.

In the case of a real-valued outcome space X = [a,b] C R!, we can define
a preference function W (-) — whether or not it is probabilistically sophisticated
— to be weakly risk averse over subjective acts if it is at least as risk averse as
any risk neutral preference function over acts, that is, any preference function of
the form Wxy ( =[.f s ) for some absolutely continuous subjective
probability measure u( ). Smce condltlons (a) — (e) in Theorem 5 make no reference
to the respective individuals’ beliefs, it turns out that if W( ) is at least as risk
averse as some risk neutral preference function Wg ( =[sf s , it

will be at least as risk averse as every risk neutral W ( =[sf )37

37 To see this, observe that for any such Wg (), its integrated local evaluation function will take
the form [ drn (2, s; f)-ds = [ x-v(s)-ds = x, independently of its subjective density /().
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This definition of risk aversion over subjective acts is thus “belief-independent” —
both in the sense of not requiring W () to be probabilistically sophisticated, and in
the sense of being independent of particular risk neutral Wgry (+) (i.e., its particular
beliefs 1(-)) used for comparison. By Theorem 5, any such subjectively risk averse
W (-) will exhibit the following properties:

e W (-)’s integrated local evaluation function |, s ®(x,5; f)-ds is concave in x at

each f()

e As m — oo, W(-) is weakly averse to every almost-objective spread with
nonpositive mean

e If W(-) is willing to accept small-event = < =’ — ' spreads at any odds
ratio greater than £, it must be that £ > (z/ — z) /(2" — 2)®

e W (-)’s associated risk preference function Viy () is weakly risk averse

e If W(-) assigns likelihoods of p, to A and p;, to B, then it is weakly averse
to any subjective spread [z’ on AU B; fy(+) elsewhere] — [z on A; z on B;
fo(+) elsewhere] for which p, - (2" — ') < pp- (2’ — x)

6 Connections and extensions
6.1 Related work of Epstein

As mentioned in the introductory Note, Epstein (1999) has also proposed a notion
of event-differentiability for a subjective preference function W(-), which can be
described as follows:*

As in Section 4.1, view each act f(-) € A as a mapping e(-) : X — & from
outcomes to events that satisfies (i) e(z) = f~!(z) = () at all but a finite number
of z; and (i) {e(z)|x € X'} is a partition of S, so that U,c v e(z) = S, and x # z*
implies e(z) N e(x*) = 0. Let A denote the larger family of all event-valued map-
pingse(:) : X — & thatsatisfy property (i) but not necessarily property (ii). Epstein
defines event-differentiability for functions W (-) on A, so it will apply naturally
to any subjective preference function W (-) defined over A C A. Given a gen-
eral event-valued mapping e(-) : X — & that satisfies (i) but not necessarily (ii),
et (-) is said to satisfy et (-) Ne(-) = 0 if e*(z) Ne(z) = O for each x, in which
case define e(-) + e™(-) as the mapping that takes x to e(z) U e™ (). Similarly,
e~ (+) is said to satisfy e~ (-) C e(+) if e~ (z) C e(x) for each z, in which case de-
fine e(-) — e~ (+) as the mapping that takes x to e(x) — e~ (x). A finite collection
{e1(*),... ,en(-)} is said to partition e(-) if {e1(x),... ,e,(x)} is a partition of
e(x) foreach z € X. Given the family {{e1 (), ... ,en. x(-)}|k € K} of all such
finite partitions of e(-), we can define a partial order > on this family by defining
{erw (), sen w ()} =k {e1,x(s), ... s en, ()} if the partition of S implied
by the former is a refinement of the partition implied by the latter.

38 As in the objective case, £ > (z' — x)/(x’" — x') is only a necessary condition for a risk averse
W (+) to be willing to accept such spreads, and it needn’t be sufficient.

3 1In the following, Epstein’s notion has been adapted to maintain consistency with the notation used
in this paper.
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A general function W (-) over A is then said to be eventwise-differentiable
at eo(-) if there exists a family of bounded and convex-ranged event-additive
functions {dW,(-;eo)|x € X} such that, for each & > 0, each e*(-) such that

et(-)Neo(-) = 0, and each e~ (-) such that e~ (-) Ceg(-), there exists partitions

(-

{éf(~)7 e §+ )} of et (-) and {&7(-),...,é, ()} of e~ (-) such that

_j Wleol e ()—e; () = Wleol) — [V} e0) iV (e; seo)]| < & (60)
foreach {e}"(),... e} ()} = {e (), .. e () and{ey ().... e, ()} =k
{é1(),... &, _(-)}. A preference functlon W (-) over subjective acts is then said

to be eventwise-differentiable if it satisfies the above definition over its domain
A C A, in which case its derivative will be unique and satisfy the chain rule.
Epstein applies this notion of eventwise-differentiability in his characterization of
the property of uncertainty aversion, and it has been also been adapted to analyze
the core of nonatomic transferable-utility games by Epstein and Marinacci (2001).

For each j, the expression inside absolute values (60) is analogous
to the error-term expression W(f(-)) — W(fo(-)) — [ ser Po(AES; fo)—
Y wex Po(AEL; fo)] implied by the event-differentiability formula (19). In this
sense, the two notions of event-differentiability have the same structure for their
first-order approximation. Epstein (1999, Appendix C) also compares his definition
of event-differentiability with a definition similar to (19), proves a version of the
Fundamental Theorem of Calculus, and shows that when a preference function is
differentiable in both senses, the derivatives coincide. The primary difference be-
tween the two notions of differentiability lies in their treatment of convergence. In
particular, by replacing the error-term expression 6(f*(-), f(-)) of (19) with the
sum of n,, such terms in (60), Epstein’s definition eliminates the need for any un-
derlying reference measure A(-) on the state space S, as well as the need for any
distance function §(-, -) between acts.

6.2 Extension to more general state spaces and preferences

Given this paper’s theme of robustness, it is worth noting how its assumptions of
a uniform reference measure A(-), a univariate state space S = [s, 5], and event-
smoothness can each be relaxed.

Although many state spaces possess a natural uniform reference measure, oth-
ers do not: For example, if the state of nature is the exchange rate, then a uniform
reference measure on the Dollar/Euro rate is not equivalent to a uniform measure
on the Euro/Dollar rate. However, it is straightforward to show that if two alterna-
tive choices of reference measure A(-) and A\*(-) are mutually absolutely continu-
ous with respect to each other, with Radon-Nikodym derivatives that are bounded
away from both 0 and oo, then event-differentiability with respect to one refer-
ence measure will be equivalent to event-differentiability with respect to another,
and more importantly, W (-)’s local evaluations of the growth and shrinkage sets
{(AE}, AE, )|z € X'} between any pair of acts f(-) and f*(-) will be invariant
to the choice of reference measure.
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As with the almost-objective uncertainty analysis of Machina (2004), the anal-
ysis of this paper can also be extended to more general state spaces — in particular,
to multivariate Euclidean states spaces as well as smooth univariate or multivariate
manifolds. The key requirement is that the state space admit of almost-objective
events, which will be the case if it can be “tiled” by arbitrarily small but suitable
measure spaces. Compared with the approach of Savage (1954), the analysis of this
paper is seen to require more structure on the state space S, and hence on the choice
space A of subjective acts, but less structure (neither expected utility nor proba-
bilistic sophistication) on beliefs or preferences over this choice space. Of course,
from a scientific and observational point of view, verifying structural assumptions
on a state space or a choice space is — if anything — much easier than verifying such
assumptions on an agent’s (or a collection of agents’) beliefs or preferences over
such spaces, under either certainty or uncertainty.

Finally, the assumption of event-smoothness can also be somewhat relaxed.
Recall that in standard analysis, the Fundamental Theorem of Calculus continues
to hold for functions that are not everywhere differentiable, so long as they are
absolutely continuous: we simply “integrate over the kinks.” In a similar manner, the
analysis and results of this paper can be extended to subjective preference functions
W () that exhibit kinks in the events, so long as these kinks are sufficiently isolated.

The results of this paper have shown that the analytics of the classical expected
utility/subjective probability model of risk preferences and beliefs — which contin-
ues to dominate research in choice under uncertainty — are in fact quite robust to
smooth departures from its basic underlying assumptions of the Sure-Thing Prin-
ciple and Probabilistic Sophistication. Or as Sir William Gilbert might have said:
It is very very general, for a modern major model.
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Appendix — Proofs of Theorems*’

Proof of Theorem 1. (a) = (b): Given U(-|-) and u(-), select arbitrary & € X
and for each z € X, define the signed measure @, (-) by
)

b, (E) = /E [U(a]s) ~ Uals) + /S U (#]w -du(w)} du(s) (A1)
For any f(-) € A, we can thus write W(f(-)) = [4 U( s)-du(s) as

W(f()) = /s [U(f(s)IS) — U(ﬂs)+/SU(£|W)'dH(W)]'dM(S) _
Z/ l(x) +/sU ) dp(es ]d“(s)zz%(f_l

reX zeX

(A2)

Absolute continuity of each @,(-) follows smce 45 ([ s)) = W(x on s, s];
Zon (s,3]) — ®:((s,5]) = W(xon[s,s];4 on ( — [[sU(@|w) - dp(w)] -
u((s,?]) is the difference of two absolutely contlnuous functions of the event
boundary s.

(b) = (a): Absolute continuity of the signed measures {&,(-)|x € X'} implies
they can be represented by a family of signed densities {¢(x, )|z € X'} on S.
Define p(-) = A(-)/A(S) (where A(-) is uniform Lebesgue measure), and define
U(x\s)xzs ¢(x,8)-A(S). For any f(-) € A, we then have

| SDNAEEES o) I

zeX zeX l(r) (AS)

~ [ ottt s - /S o)t

(b) = (c): This follows since W(f*()) W) = Yoexl®(ES) —
Do (Er)] = Ypex [P (AES) — o (AE)] forall f(), f*(-) € A.

(c) = (b): Select arbitrary & € X and foreachz € X and E € &, define §,(E) =
W(zon E;zonS—FE)—(1—(A(E)/A(S)))-W(& on S). To see that each ¢, (+)
is additive and hence a signed measure, pick arbitrary disjoint F, E’ and observe
that constant sensitivity in the events implies

®,(EUE") = W(z on EUE" ;2 on S—(EUE")) — (1—%) -W(z on S)
- [W(;z: on EUE';#onS—(EUE')) —W(zon E;2onS—E') +  (A4)
MNE , AE .
)\((S))W(j on S)] + {W(az onE';zonS—E')— (17 A((S)))W(x on S)}
= [W(IC on E;ionS—E) —W(zonS) + f\\((g))W(a% on S)} + @, (E)

= @I(E) + QSI(E/)

40 In the following proofs, it will often be notationally more convenient to work with a preference
function’s local evaluation measures P (E; f) = fE¢(x, s; f)-ds as defined in (19), rather than its
local evaluation function ¢(z, s; f).
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Absolute continuity of each @,(-) follows since @,([s,s]) = W(x on [s, s];
Zon(s,35]) — (1= ((s—5)/A(S)))-W(Z on S) is the difference of two abso-
lutely continuous functions of the event boundary s. Given arbitrary f(-) =
[x1 on Ey;... ;x, on E,], constant sensitivity in the events thus implies

W(f()) =W(f(-))—W (& on Ex; f(-) elsewhere)

+ W(& on Ey; f(-) elsewhere) =W (2 on E1U E»; f(-) elsewhere)

+ W(i: on E1U Es; f(+) elsewhere) —W(i’ on E1UESUE3; f(+) elsewhere)
; (A5)
)+ W (zonS)

97)

+ W(&on E\U...UE,_1; f(-) elsewhere) =W (Z on
= Z (W (x; on E;; & on S—E;) =W (& on S)] + Z AME:) W (z on S)
i—1 i_1

i1 ¢I1 (EZ)
Proof of Theorem 2. Let § be an arbitrary continuity point of f(-), let ¢, > 0
and g, > 0 be small enough so that [§ — &,,5 + €] C f~1(f(3)), and define
freaen () = [f(8)+7 on [§ —e4,8 + ]; f(-) elsewhere]. By (43) we have
that Wy ercn()) = W) = 7 W(5 — s + 22)5 /) + o(7]). By
joint outcome-event smoothness, this expression is twice continuously differ-
entiable in (v,e,4,&p) about (0,0,0), which implies that ¢ (s; f) is continuous
in s about 8, and also that *W (fy.c.c,(-))/070cp|ymcn—c—0 = ¥(3; f).
By (19), we have W(fy.e, ,(-)) — W(F() = Bpisyir (5 — 005+ 2] f)
Pris)([5 —€a, 5+ cu); f) +0(leq + €1]), so that OW (fy e, .2, (+))/OCb|e,=c,=0 =
o(f(8)+,8; f) — ¢(f(8),8; f). By joint outcome-event smoothness, we thus
have '(/}(é’ f) = 82W(f'y7ea,ab('))/8785b‘7:€a26b:0 = ¢I(f(§)’ 8 f)a which is
(44)'. Equations (43) and (44)’ then yield (45)'.

Proof of Theorem 3. (48) = probabilistic sophistication: We first show that
each finite-outcome lottery P can be associated with a unique “basic reference act”
fe(-) € A, and that W (-) is probabilistically sophisticated over the family of such
acts: Well-order the elements of each indifference class of the outcome preference
relation =, and construct the strict order =" over outcomes defined by z* =+ x if
and only if (i) z* > z or (ii) * ~ = and x* is ordered above x within their common

indifference class. Express each lottery in the form P = (21, p1; ... ; &n, Pn) with
1 <T 2 <T... <t 2,and py,..., P, > 0, and define its associated basic refer-
ence act fp(-) = [£10n [s,s1]; &2 on (s1,82];... ;Tpn ON (Sy—1,35]], where s7 is

the smallest state in S such that p([s, s1]) = p1, s2 is the smallest state such that
1((s1, $2]) = Pa, etc. For each P, define V(P) = W (fp(-)). Since this implies
W(fe()) = V(@1,P15--- 580, 0n) = V(@1, (8, 51]); - -+ 58,y p((S0-1,3])) =
V (@1, u(fp'(#1));- -+ ;@n, u(fp'(2n))), W(-) is probabilistically sophisticated
over basic reference acts, with lottery preference function V' (+) and subjective prob-
ability measure p(-).

We now show that every act f(-) € A with an implied outcome lottery P will be
indifferent to fp(-), so that W (-) is probabilistically sophisticated over .A: Since
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f(-) implies the lottery P, we have u(f~'(z)) = u(fp'(z)) for each = € X.
Defining { f7*(-)|a € [0, 1]}29_; as the almost-objective mixture paths from fp(-)
to f(-), the Line Integral Approximation Theorem and (48) imply

W(f() =W (fe()) = lim /Z ) = @, (fal(@); )] -da

TEX (A6)
= lim /Z (2;Ppm ) -p(f~ (x))_U(x5PfZJ‘> ) (fP (z))]-da =0

m—0o0
zeX

Probabilistic sophistication = (48): Event-smoothness of W (-), probabilistic
sophistication, and absolute continuity of x(-) jointly ensure that V' (-) is differen-
tiable in the probabilities. For arbitrary 2z € X, interior state s € S and act f(-) =
[x1 on Ey;... ;x, on E,] € A, formulas (22) and (10) imply*!

xz on B, z on B,
W(f() OHS_BS7€)W(f(') 0n8—Bs,a> -

e—>o 2.

o(z,s;f) =
(A7)

[V(:c J(Bse); 1, p(E1—Bse); .. ;xn,u(Enst,s)) }
lim ( 7,“/( ) o (El_BS,E); cee 3T, /Jf(En_Bs,s)) ] /L(BS’E)
e—0 ,U(Bs,a) 2.¢

= U(x; Py p)-v(s)

where U(z;P) is the z-normalized local utility function of V(-) at P. When
w(Bs ) = 0 for all small B . about s, so that the left fraction in the second line
of (A.7) is undefined, the numerator in the first line will be zero, as will be v(s),
so we again obtain ¢(z,s; f) = 0 = U(x; Py,,,)- v(s).

Proof of Theorem 4. (a) = (b): Given arbitrary z* = x, f(-) € A, rational L* <
L and € > 0,definey = [Py+(A; f)—Po(4; [)]—L*[Pop=(B; f)—P.(B; f)] >0
By (19) there exists 0* > 0 such that §(f(-), f(-)) < é* implies

WO =W () = [ D @a(F @) 1) =D @£ @) )] |

Ii;; A eXx A8
< NA) + LFAN(B) : 5(f(')» f())

Select integers ng,np such that n,/ny, = L£* and A(A)/n, + M(B)/ny, <
min{e, §*}. By Stromquist and Woodall (1985, Thm. 1) and (21)’, there exist &£-
measurable partitions {41, ... , A, }of Aand {By,..., By, } of Bwith A(4;) =
AMA)/ng < eand @«(As; f) — Pu(As; ) = [Pu(4; ) — P (A; f)]/nq for each
i, and \(Bj) = X(B)/ny < € and @u+(By; f) — D2(Bj; f) = (Do (B3 f) —
&, (B; f)]/ns for each j. For each i, j we thus have

Do (Ais f) — Do (Ais f) — Poe (B f) + Po(Byi f) = (A.9)

41 For states on the boundary of S, replace Bs . = [s — &, s + €] by the appropriate half-ball, and
replace 2-€ by €.
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(P (A5 f) = Pu(As )] /10 — L5 [P (B f) = Pu(B; f)] /10 = /14

For each 1, j, define the acts flLJ() = [z* on A;; z on By; f(-) elsewhere] and
J55(-) = [z on Ay; * on By; f(-) elsewhere] from (53), so that we have both

AA) | MB) _ MA) + L¥N(B)

S(fELf) < MA) +A(By) = o o o <(A5>;0)
SR 1) < MA) +A(By) = MAL LAB) A FLENB) g,
; Ng np Ng,
For each i, 7, (A.8) and (A.9) thus imply
W(rEE) —W(Ee) > (A.11)

- - 57 (O, ) +0(f,
ST (F5 @) ) - S8 (FR @)i) - 22 §(f)’+12;((]§; 8

TEX TeX

2 gzim*(Auf)745:&(1417.]0)7¢m*(BJ,f)+@:E(B]’f)77/”& =0

(b) = (a): Say (a) failed, so that v = Py« (A; f) — P (A; f) — L* [Py« (B; f) —
@, (B; f)] < 0 forsome x* - z, f(-) € A andrational £* € (0, £). By (19) there
exists some € > 0 such that 6(f, f) < 2 - implies

W) = W) = [ (7 @) = X a7 @) |
Tex A Tex A12)

Given arbitrary e-partitions {A4;,...,A,, } of Aand {By,..., By,,} of B with
ng/np = L£*, additivity of local evaluation measures and the definition of v imply

Ny

Z:Zl [éx*(Aﬁf)_@m(Ai;f)} - E*'Zj:

= ST | A DT AB))

Substituting n,, /ny, for the first and third occurrence of £* and rearranging yields

27:1 [%*(Ai;f) =P (Ais f) — mA(Az)] =

. [%*(Bj;f)—%(Bj;f)}
(A.13)

(A.14)
Na T (Bi: ) — . T \B:
This implies there exists some A;; and B;/ such that
v
D+ A‘I' — @ A'/' .. A,,
(A ) = BAei ) ~ o e A .
< Do (Byif) = 0o(Byif) + s AB)

XA) + L*A(B)
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Define fr(-) = [z*on Ay;x on Bj/; f(-) elsewhere] and fr(-) = [z on A;;
x* on Bjs; f(-) elsewhere|, s0 d(fr, f) < AM(Air) +A(Bj/) < 2-eand 0(fr, f) <
A(Air) 4 M(Bj/) < 2. By (A.12) and (A.15),

St G 5 D

zTex TeXx

A(A:)+A(Bjr)
Doe(Airs )+ Do (Bjr f) — Po(Airs f) — Po=( By AL T D)
(Airi ) @o By f) = PalAirsf) = Por(Bys )+ WSy gy = °
But since {A4;,...,A,, } and {By,...,B,,} were arbitrary e-partitions with

ng/ny = L*, this contradicts (b).

(a) = (¢): Given arbitrary z* > z, f(-) € A and rational £* < L, (52) implies
Y = Pus (A; f) — Pu(A; f) — L*- [D4+(Bs f) — Pu(Bs f)] > 0. By (19) there ex-
ists some € > 0 such that §(f, f) < 2- ¢ implies

W) =W () = [ 3 @a(F @) =Y @a(F @) )] |

TeX TeEX

/2 ;
CSOECY. Fo(-
< s S FO0)
Given arbitrary e-partitions {41,...,A,,} of Aand {By,..., B,,} of B with
ng/ny = L*, we have

(A.17)

ny

221 {QS” (A f) = gpx(Aiéf)} - E*Z

Jj=1

v Na " ny -
N TENE) | M+ L 3 B

Substituting n, /ny, for the first and third occurrence of £* and rearranging yields

ZZI [Q’x*(Ai;f) =P (A f) - m*@%g =

Ng np

(@0 (Bj: ) = .(Bys f)]
(A.18)

(A.19)
Y \B .)]

AA) + L*A(B) J

This implies there exists some A;; and B;/ such that

v

S [P B - (B )+

Dy (Airs ) — Pu(Airs f) — NA) £ LB A(Air) (A20)
> Du(Bjrs f) — Pu(Bjr; f) + m - A(Bj)

Define fr(-) = [2* on Ay;x on Bjs; f(-) elsewhere] and fr(-) = [z on Ay;
x* on Bjs; f(-) elsewhere|, s0 §(fr, f) < A(Air) +A(Bj) <2-cand 0(fr, f) <
A(A;) + A(Bj) < 2-e.By (A.17) and (A.20), we have

W(fL()) = W(fr()) > (A21)
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Loy (6(fr, 0(fr,
Z(‘b foc Z@ fRJAC 2’7(({Lf)+(fRf))>

pEX Fex A(A) + L*X(B) -
By (Ais )+ o (Bjr f) — B (s f) — Do (Byri f) — ((A(;Z)Z*A(Ji ))) .

(c) = (a): Say (a) failed, so that ¥ = @y« (A4; ) — P (A; ) — L+ [Ppx (B; f) —
D, (B; f)] < 0forsome z* > z, f(-) € A, andrational £* € (0, £). By (19) there
exists e* > 0 such that §(f, ) < 2 - ¢* implies

W(FO) =W (FO) = [ @a(F @) ) =3 @s(7 @) 1) |

TEX TeEX
Ly ) (A.22)
< m S(fC), F()

Select arbitrary ¢ € (0,e*) and integers n, > A(A)/e and n, > A(B)/e such
that n, /n, = L*. By Stromquist and Woodall (1985, Thm.1), there exists an &-
measurable partition {Ay,..., A4, } of A with A(4;) = A(4)/n, < € and
Do (Ais f) — P (Ais f) = [P (A5 f) — Py(A; f)]/na for each 4, and an &-
measurable partition {By,...,By,} of B with A\(B;) = A(B)/ny, < ¢ and
Do+ (Bj; f) — Pu(Bj; ) = [P (B; f) — P (B; f)]/ny for each j. This implies
that for all ¢, 7 we have

Doe(Ais f) — Do (Ais f) — Doe(Bys f) + Po(Bys f) =

D (A; f) — P (A5 f) . E*,QSI*(B;JC) — %.(B:f) = 7/Na

Ng Ng
Define f/;(-) = [z* on Aj;z on By; f(-) elsewhere] and ff(-) = [z on A;;
x* on Bj; f(-) elsewhere], so that we have both
A(A) N AB)  AA)+ L*\(B)

Ng np Ng

(A.23)

5115, f) < AAi) + A(By) = < 2%

(A.24)
LAB) _MA A LEAB)
Ng np Ng

S(fI5, 1) < MA) + \(By) =
For each 7, j, (A.22) and (A.23) thus imply

W (L) W) < (A.25)

2% 2]

8>

A |’Y| 5( 1]7f)+5( zg?f)
= 2 (S @) S S T A

Z 452( ij,dji

GeX peX
Po- (Ai; f) = Pa(Ai3 f) = o (Bys f) + P(Bys f) + 7l/ma = 0

Butsince {A1,...,A,, }and {By,... , By, } were e-partitions with n, /n, = L*
for arbitrarily small € > 0, this contradicts (c).
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(a) = (d): Consider arbitrary ¢, ey C [0,1] with A(pq)/Aps) = (>)1/L,
x* > x, and f(-) € A. By Step 1 of the proof of Theorem 4 in Machina (2004),
both limits in (55) exist. For arbitrary £ > 0, event-smoothness (boundedness and
uniform continuity of the families {¢(x*,-, f)| f(:) € A} and {¢(z,-, /)| f(-) € A})
and Theorem 0 of Machina (2004) imply some m. such that both
|¢z*(anA;f) - djx(anA;f) - )‘( a)'(@m*(AU?) - dsz(Aaf))! < 5/2 (A.26)
|Ba-(p0 Bif) = Pu(v Bif) — Mpn)- (2+(Bif) — Dol Bif))| < /2

m m

for all m > m, and all f(-) € A. Event-smoothness (the bound &, (B; f) —
D,(B; f) > ®,., 5 > 0forall f(-)) and (52) then imply

By(pax Aif) — Pu(pax Aif) — Pur(ppx Bif) + Du(ppx Bif) >
A(pa)(ém*(AafA) - @z(Avf)) - )\(@b) (éx*(BafA) - ¢z(vi)) —€2 (A27)
[)‘(pa)‘c_)‘(pb)](éa:*(B7f)_¢w(BafA)>_5 > [/\(@a)ﬁ_)‘(pb)] 'Qm*,z,B — €

for all . > m, and all f(-). The change sets from f}2*(-) = [z on g, x A;x*on
o X B; f(-) elsewhere] to f7(-) = [z* on paX A; z on ppx B; f(-) elsewhere] in
(55) are AE. = AE; = = paxAand AE_. = AE} = ©yx B. For the almost-
objective mixture paths f’C (- ) [f7(-) on [0, a] XS5 f7 (- ) on (o, 1] x 8] from
f(-) to fI*(-), the Line Integral Approximation Theorem and (A.27) 1mp1y

W () =W (fR() = lim / (P AfE™) + B BifE™) —
(A.28)
Por(pv Bifo ™) —%(mw;fﬁ"ﬂlda > Mpa) L-Ap)] Bpey g — €

for all m > m,.. Since € > 0 was arbitrary, lim W(f7"(-)) — lim W(fz(-)) >
[A(pa) L= A(pb)] =x*x,B T (>) 0.

(d) = (a): Say (a) failed, so that v = @,«(A; f) — P, (A; f) — L+ [Pp=(B; f) —
&, (B; f)] < 0 for some z* > x and f(-). By (19) there exists some 6* > 0 such
that (f, f) < 0* implies

W) = W(FO) = [ (7 @) = X 27 @) |
f(le - (A.29)
< m O(f0), ()

Select pq, o C [0, 1] such that A(p,)/A(ps) = 1/L and A(pa)-A(A) + A(pp) -
A(B) < 0*/2. By event-smoothness and Theorem 0 of Machina (2004) there exists
m* such that for all m > m* we have the following three relationships

ApaxA) + A(ppxB) < 2-(A(p
|Por(9aX Asf) — Pu(pax Asf) — Mpa): (Par(4;
| (6% B3 f) — Du(06x Bif) — Agp)

o) A(A) + AMpp)-A(B)) < 6% (A.30)
H=2(A:0)| < 1171 A(pa)
(@2 B;f) = Pu(Bsf))| < 1171 M(pa)
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For all m > m* we thus have
Dy (Pax Asf) — Pulpax A; f) gbm( X Bif) + ®.(opx Bif) < (A31)
Aga) (Par(Asf) = Pa(Asf)) = Mpn) (Pur(Bsif) = P Bif)) + 5-17]-Apa)
= Mgpa)- [(Par(Asf) — m(A§f)) = L(Po(Bif) = Do(Bsf))] + 5171 Mpa)
= Mpa) v + 31 Apa) = =517 M0a)

For each m, define f7'(-) = [#* on p,x A; x on g, x B; f(-) elsewhere] and
TR () = [ onp,x A;x* on o, X B; f(-) elsewhere], so the change sets from
fr() to fir(-) are AES. = AE; = pox A and AE;. = AE} = o, % B. For
each m > m*, (A.30) implies 6(fL ,f) and 6(fF, f) are each less than or equal
0 AMpax A)+ A% B) < 2- (\pa) A(A) + A(pr) AB)) = 2-A(pa) - (\(A) +
L-A(B)) < 0*. This yields a contradiction of (d), since A(p,)/A(pp) = 1/L, yet
for each m > m*, (A.29) and (A.31) imply

W) -w({g() < (A.32)
S L | | ((fLaf) (Elvf))
;(45 (@) ;(@ (fe (@) 16 A L LA,

< gpm*(@a?ﬁAyf) +¢m(pb§37f) _gpa:*(@bﬁBaf) _ém(@a?ﬁAvf) + ih/')‘(pa)
< _%'h/")‘(pa)—’—i'h/")‘(@a) = _i'h/")‘(@a) <0

(a) = (e): Consider arbitrary disjoint g, C [0, 1] with A(p.)/Aps) =(<) L,

a* = x,and f(-) € A. By Step 1 of the proof of Theorem 4 in Machina (2004),

both limits in (56) exist. For arbitrary € > 0, event-smoothness and Theorem 0 of
Machina (2004) imply some m, such that both

|¢z*(@b2<nA;f) - ¢w(pb2<nA7fA) - )‘(pb)(éw*(Ayf) _éa:(AafA))‘ < 5/2 (A.33)
|@m*(@a>1§zB;f) - ¢m(pa§Baf) - A(pa)(@x*(BjA') _@m(BafA)M < €/2 -

for all 7 >m. and all f(-)€.A. Event-smoothness (the bound ®,.(B;f) —
D,(B; f) > @ 4y p > 0 forall £(-)) and (52) then imply

Do (ox Asf) — Du(pox Asf) — Du(pax Bif) + Pu(pax Bif) >
)‘(pb)(@w*(Ayf) —sz(A,f)) - )‘(pa)' (ém*(vi) _pr(viA)) —e > (A34)
[Np6) L=Npa)] - (P Bsf )= Du(Bif)) —€ = [Ap) L=A(pa)] P oep 5 — €

The change sets from f7'(-) = [2* on p,x (AUB); 2 on oy x (AUB); f(-)
elsewhere] to f7*(-) = [2* on (p, Ugp) X A;z on (p,Ugy) X B; f(-) elsewhere]
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in (56) are AE). = AE; = o,x A and AE,. = AE] = p,x B. For the
almost-objective mixture paths f*: m( )= [f7*(-) on [0, a]xS B ) on (a, 1)x 8]
from f7'(-) to f7*(-), the Line Integral Approximation Theorem and (A.34) y1e1d

1

W) =W (R () = tim [ [@o(opx AfE™) + P00 BifE™)
—eJo (A.35)

- ¢x*(@a>,§B§f§’nl) - éz(pb§A§f§Jn):|'da > [A(pb)'ﬁ_)‘(pa)]'gz*,z,B —€

for all m > m.. Since € > 0 was arbitrary, lim W(f7"(-)) — lim W(fz(-)) >
[A(pn)- £ = Mpa)l Py g = (>) 0.

(e) = (a): Say (a) failed, so that v = P,(A; ) — Pu(A; f) — L - [Po+(B; f) —
&, (B; f)] < 0 for some * = x and f(-). By (19) there exists some 6* > 0 such
that 6(f, f) < 0* implies

W) =W () = [ 3 @a(F @) =Y @a(r @) )] |
if-xlvl A peX (A.36)
< Tnoaos HO10)

Select disjoint g, pp C [0, 1] such that A(pq)/A(pp) = £ and A(pp)-(L+1)-M(AU
B) < ¢*/2. By event-smoothness and Theorem 0 of Machina (2004) there exists
m* such that for all m > m* we have each of the following three relationships

A((9aUgn) X (AUB)) < 2-A(paUgp)- AMAUB) = 2-A(p)- (L+1)-A(AUB) < 6%
(A37)
|Boe(px A5 f) — Do ux A5 f) = Apn)- (D Asf) — Dal As)) | < S-17]-Agon)

|Po+(9aX Bif) = Dol 9aX Bif) = M) (Par(Bsf) — Pl Bif)) | < 5-17]-Ago)

For all m > m*, the second and third relationships in (A.37) imply

Dor(p X Asf) — Do X Aif) = Par(9aX Bif) + Pal(pax Bif) < (A.38)
App) (P Aif) = PolAif)) = Mpa) (Por(Bsf) — Pu(Bsf)) + 517 Mgp)
= Mpo)[(Par{ A f) = Pl A f)) = L-(Po(Bif) = Pl Bif))] + 5-17|- M)

= Mep) v+ 3: 1 A(p) = —3-17- M)
For each m, define f7(-) = [2* on (p, Ugps) X A; x on (p,Ugp) X B; f(-) else-
where] and f7'(-) = [z* on p, X (AUB); x on g, X (AUB); f(-) elsewhere], so
the change sets from f7'(-) to f(-) are AE). =AE; =pyx A and AE,. =
AE = p, x B. For each m > m*, the first relationship in (A.37) implies
S(f7*, f) and 8(ff, f) are each less than or equal to A\((paUgs) X (AUB)) <

2-Mpp)-(L+1)-AM(AUB) < é*. This yields a contradiction of (e), since
AMpa)/App) = L, yet for each m > m*, (A.36) and (A.38) imply

W) =w(fr () <
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5 [V OUE N)+O(FR. 1))
2P nh) = 2 pe R e a(op)

< @x*<@b§A7f) +¢z(pa§vi) _@x*(@aZﬁvi) _éz(prﬁAaf) + ih/l)‘(@b)

< =5 A(pe) + 117 A (o) = =317 A(pp) < O

Proof of Theorem 5. (a) = (b): Consider arbitrary =’ = 2’ =z, f(-) € A
and disjoint nondegenerate ,,pp C [0,1] that satisfy the upper inequality of
(58). For each m define A,, = puxS, Bn =@pxS, fI'() =[z" on A;
x on By,; f(-) elsewhere] and f'(-) = [2' on A,,UBy,; f(-) elsewhere], so there
exist m* and v > 0 such that 2.y > W*(f"(-)) — W*(f(-)) > ~ forall m >
m*. Selecte € (0,1) less than min{A(p,), A(ps)}, and small enough so that both

1—¢ Aga) -
(1 T1e W)'[ZH(1+8)-(/\(m)+5)-d5x,@73} < 7/(4A40)
(N 1) o B e) Bhs <

Event-smoothness and Machina (2004, Thm. 0) imply the four relationships
’éfc”(Ame)*@r/(AmEfA)* A a)[ z”(S'f)*@z’(SEfA)H
< E- @z” /S < [ m’/ S f x’ (Sa f)}

‘@x/ (Bm§ f) - (Bm; f) )‘(pb) [ ( ) (S )] |

< ePu,s < e[P(S S; )] (A4D)
|5 (Ams ) = B (Ams ) = A(ga)- [ w( ) @5 (S; )]
< & @x” ', S < & [@ ” ( f)}
|25 (Bm: f) = 95 (Bins ) = Agw): [@* <S RG]
< e®h,s < 5[45, — 1S5 f)]
for all m greater than some m** and al ( ) € A, and thus the three relationships
Byrr (A ) = B (Ams f) _ Mpa) =€ @0n(S; f) — s (S3 f)
Py (B; f) = @o(Bi f) ~ M) e 00(S1f) = 24(S; f)
(At f) = P (Anif) _ Mow te BSOS
(B f) — (Bucf)  Now)—¢ @S ) assf)
SZS5?(1-%,f)—d%’;(l-?m i) )  Alpp)te Plias

b)+e BulS; ))—x(S; f
)—€ Bp(S; f)—Du(S; f) = Mpv)— € Dyas

for all m > m** and all f(-). Select arbitrary . > max{m*, m**} and define
Ym = WH*(f" () — WH(fE(-)), so 2-v > ~,, > 7. For each k, define the

Al
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parametrized family of acts { £ 5(-)|, 8 € [0,1]} by
z” on [0, a]xAp,
z' on (a,1]xAn
ap()= |z on0,xBy, (A43)
' on (8,1]xB,,

X
(+) elsewhere

so that for each k we have f{“l() = f"(-)and 6(f§o, f7) = 0.

By an argument similar to that in Machina (2004, pp.39-41), we can select large
enough  such that the partial derivatives OW (f% 5(-))/Occand OW*(fF 5(-))/0a
exist and satisfy

W (£ 5()) /00 = [ (Ams £ 5) = Bar (Aumi £ )]
< [ @CE!/ 2/, A < E'[@I”(Am; Zfﬁ)_@z’(Amv s,ﬁ)]

~

(A.44)
0w (14,5()) 00~ [ (Am: fh.) = 25 (A 14,
< €- @I,/ oA, < [ z! (Ama ) _QS:’ (Am§f§”@)]

at all but a finite set of values of a € [0, 1] (where these values are independent of
3), and the partials OW (f¥ 5(-))/8 and W*(f 5(-)) /013 exist and satisfy

OV (£ 5()) /08 = [@2(Buni 15 5) = s (B ££.5)] |

< cbu,p, < e [Pu(Buifhy) ~ Bo(Buifh )]
(A.45)

(oW (15 5(9) /08— [@F (Buni 15 5) = @5 (B £ )|

< E'ngm,Bm < €'[¢;(Bm§ 5,5)_@:(3m3 gﬁ)}

at all but a finite set of values of (3 (where these Values are independent of
«). Since ¢ < 1 this 1mp11es oW ( () /Oa, OW*(fk 5(:))/0a > 0 and

oW (f* 0.5(1)/08, oW (fk ap()/0B < 0 except at these values, ) W*(fcliﬁ())
and W ( C’f 5(+)) are strictly increasing in v and strictly decreasing in §3.

For each value of 3 € [0, 1], let a(f3) be the unique solution to W*( f* 0(3),6())

W5 0()+Ym B = W*(fF(-))+m: 0, sothe mapping a(-) : [0,1] — [0,1]
is continuous, strictly increasing, onto, and ' (3) exists with

a’(ﬂ)ﬂW*(fi(g),g(-))/@a+8W*( 5(5),5('))/35 = Ym >0 (A46)
at all but a finite number of values of 3. By (A.45) and (A.41) we have
W (faip),5())/08 > —(L+e)- (@5 (Bmifhis),5) — Ps (Bmifis)5)]
> —(Lte)-(Mew) +)- [ (S: fo.0) = P2 (Si fap)]  (A4D)
> —(1+ 5)'()\(%) + 5) '5;@,5
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so that at all but a finite number of values of 5 we also have

a'(ﬂ)-@W*(fi(ﬂ)ﬁ())/aa = Tm — 3W*(f§(g),g('))/aﬁ
< Ymt (L +e)- (M) +€) 61‘,’%3

(A48)

By (A.46), (A.47), (A.48), (A.40) and 2 > 7,, > 7, we have

1-¢ a,(ﬁ).A(pa)—e.aW*(fo( )+1+a A(m)+e OW*(fx5).5)
14e Mpa)+e da 1—e App)— ap
_ a/(ﬂ),aw*gfw),ﬁ) _ (1 1TZ i gz +z> o fa(ﬁ) 5)
+6W*g§(ﬂ>,@) <1+§ ;gz +e 1) oOW(/, a(ﬁ)ﬁ (A49)
> = (1= T2 520 ) o+ (10)- (3 <m>+e> T, s]

<1+5 Alpp)+e > “(14€)- (Mpp)+e)  Prn s

1—e A(pp)—c¢
> (12 3 et (4 (o) +) B] = T > 5 >0

The above inequalities and (57) imply that at all but a finite number of values of 3,
we have

o (B)-OW (£35),5(:)) 0+ OW (£ 5, 5(-)) /08

> (1=¢)-a'(8): [Por(Am; £(5),6) — Por (Am; £1(5),5)] (A-50)
—(1+€)- [Por (Bm; f5(5),8) = Pu(Bumi fas),6)]
. pk . fr
Par (A a(,5) = P (A Jag.5)
Dot (Bum; fa(s),8) = Pa(Bmi fa(s),5)

(1=¢)-a/(B)- - (1+¢)

B 1/[95 /(Bm;fi(g) g) - (Bmi fg(g),g)]
v Apa) —e P (Si fo (6)5) x’(s?ffi(ﬁ),ﬁ) _
> (1=e)-(B) X0y < B0 (S; (5)5) (S ) (1+e)
@2 (Bori I gy 5) — B (Bt £ )
iy, AMga) —8.1)36”(8,]0(]5(5),[3) *Q;/(S,fa(ﬁ),g) B
N (1-¢)-a/(B) NCOET @;’(S;fcl)j(ﬂ),ﬁ) (S fz(ﬁ),ﬁ) (14¢) N
- 1/[@4r (Bin; 5(5)5)_ (Bméfk )]
o A =2 Mgn)—e Tl AmiLas)0) - B(A 2(0).6)
(1—e)-o(B) o) te Mpa) Te o5(B m’fk: ) &*(Bon; i(ﬁ)ﬁ) —(1+e¢)

1/[®0 (B fF ) 5) — w(Bm,fa 8),8))
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(1—s)~a’(ﬁ)'§‘\gg‘;))_?i‘g % (P (Ami Fog),8) — Por(Ami fas) )]

(@3B fa(.0) = Pi(Bui (5) 0)1 [P (B f3) ) = @ol Boni T3y )]
(1+€) [ (Bmv a(B), ﬁ)_dj;(Bm’f(li(ﬁ)vﬁ)]
[@7(Bin; fa(8).8) ~ Pa(Bums fap),8))/ [Pt (Bms £55),5) = Lol B fa(),0)]

1—¢ a,(ﬁ).)\(pa)—g')\(m) e OW” (fk )+ 1+6.5W*(f§(5),,@)

1+e Mpo)Fe Mpa)+e 304 l—¢ op

[D%/(Buns fa(s),8) —Pi(Bm; £5).5))/ [@e(Bums [ 5).3) = Pal B fi ) )]

1—¢ Mpa)— W (fapp) | 1+e Mpy)+e W (faw).0)
_ 1+e VO Npare — da iz Alp)—c il

(A(pv)+) (8% (B 2 3).5) = Pa(Buns f ) )]
(Mb) =€) [@ar (B 5 (8),8) — Pa(Bums fa(s),)]

/2
[()‘(pb> + 5)2' 6;,1’,8]/[()‘(@17) - 5)2' gz/,m,S}
We thus have

LAW (f*
WS () = W(IE () = WL 0) = W(fo() = / Ww =
0 (A.51)
W (R ) OW(fE s ) v M) =) Byps
[l ’ [4> 3 o ms

Oa op
Since m was an arbitrary integer greater than max{m®* m**} the values
Jim W(f7*(-)) and lim W(fg'(-)), which by Machina (2004, Thm.2) both exist,
Satisfy Tim W (7)) > lim W(f ().

m— oo

> > 0

(b) = (a): Say (a) fails, so there exist 2/ > 2z’ > xz, f(-) and v > 0 with
(D3 (S5. [) = D3 (S: )] [@5:(S: /) = 23(Si )] > 7 > [P (S5 f) = Pur (S5 f)]/
(@4 (S; f) —D(S; f)]. This implies some ¢ > 0 such that both

(B2 (S; f) — Dor (S5 )] — 7+ [P (S5 f) = Bu(S; f)] < —e-(1+7) s
[85,(S; ) = B5(S; )] = v+ [B5(S; 1) — 085S )] > e-(147)

By (19) there exists some §* > 0 such that 5(f, f) < &* implies both

W) =W () = [ X @a(F @) 1) =Y @ (571 @): /)|

peX gex
< (Le/X8)6(f(), () (A.53)
TE ze

< (§-¢/N8))-6(F(), £()
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Define 7 = min{1-§*/A(S), 1} and the disjoint intervals p, = [0, 7/(1+ )] and
oo = (T/(L+7),7], s0 A(gp) = 7-7/(1+7) = 7-Apa) and A(pax S) +
App X S) = Apa) - AMS)+A(pp)-A(S) = 7-A(S) < 6*/2. By event-smoothness
and Machina (2004, Thm. 0) there exists m* such that for all . > m* we have

|Bur (90 S f) =P (90X S5 f) = Mpa)- [Pud S f) — Pur(S; )] | < 7€
| Do (0% S5 f) = a6 S f) = A1) [Par(Sif) — P (S S) ]| < i.T.s(A.54)
D5 (9a% S ) = Ph (90 %S5 f) = Mpa)- [Pl S f) = P5(S:N)]| < ;7€
| 0% (0% S5f) = D (06X S:f) —A)- [ B2, (S5f) — DE(S:f)]| < free

For all m > m*, (A.54) and (A.52) thus imply
Pol(9axSif) = P (9axSif) — Pu9p 3 Sf) + Pulp S5 f)
< M) [P Sif) = Por(Sif)] = Meow)- [P Sif) — Dol S:f)] + %-T-aA o
= Moo [#A48:f) - 280 = [‘sz(S;f) (S]] + 4 A
< —Mgpa)e(1+y) + 376 = —Te+ 376 = —%71e
and similarly
D5 (0a%Sif) = Po(pax Sif) — Polovs Sif) + Pi(0v5Sif)
> Mpa) [PoAS:f) = PoASif)] — Mepw)- [P3AS:f) — D3(S:f)] — %.T.S(A.SS)/
= Apo) |[[BEAS:F) = BES:f)] = 7 [O3S:f) — DS f)]| — 37
1

> Mgpa)e(14y) — 276 = 7e—L7e = Jre

Define f7(-) = [z" on o X S;x on gy, X S; f(-) elsewhere] and f37'(-) = [z on
(aUpp)x S; f(-) elsewhere], so that both 5(f77, ) < A((paUgps) X S) = 7-A(S)
< 0*/2 and 5(fF', f) < M(pa U pp) X S) = 7-A(S) < §%/2. By (A.53), (A.54)
and (A.55), we have that for all m > m*

W(f?(-))—W(f}%“(-)) < (A.56)
S (F7 @) )= S Ba (£ (@) f(;){é(f?,f)%(fﬁf)] <
TeX TEX
¢z/f(goa>,gS;f)—%(pagg&f)—%(pbzgS;f)Jr@z(ngS;f)+%E —%5<0
and by (A.53), (A.54) and (A.55)’ we have that for all m > m*
W (f7H() — W*(fR()) (A.56)
SCEE(fp (@) f) - SR (@); (;-[6( )+ (R )] 2
TEX TeEX
P pax Sif) — P(0ax Sif) — Pi(px S:f) + P(puxSif) — o > 5> 0

4 4
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Thus the following four limits — which by Machina (2004, Thm.1) must each
exist — will satisfy lim W*(f7(-)) > lim W*(fg'(-)), but lim W(f7*(-)) <

Jim W(f7(-)), which contradicts (b).
(a) & (¢): We establish this equivalence by showing that W (-) is willing to accept
small-event x < z’ — 2" spreads about f(-) at any odds ratio greater than some £
ifand only if £ > [,/ (S; f) — Px(S; )]/ [@w (S; f) — P (S; )], and similarly
for W*(-). To prove the “if” direction, consider arbitrary 2" > =’ > z, f(-) € A
and £ € (0, oo) that satisfy this inequality. Given arbitrary n, np with n, /ny > £
and arbitrary € > 0, define v = ny - [Py (S; f) — P (S; f)] — np- [P (S5 f) —
®,(S; f)] > 0. By (19) there exists §* > 0 such that §(f, f) < &* implies

W) =W ) = [ X @ (7@ 1) =Y @ (571 @) 1) ]|

TeX TeEX

1oy X
m 6(F(), ()

Selectn > max{nq,+ny, A(S)/¢e, (ng+np)-A(S)/5*}. By Stromquist and Woodall
(1985, Thm. 1) and (21, there exists an £-measurable partition {Ey, ... , E,} of
S such that for each i, \(E;) = AS)/n < e, Pp(Eyf) — Puw(Eis f) =
(Do (S5 f)—=Pur (S f)]/nand Por(Ejs f) — Do (Ei f) = [P0 (S3 f) =P (S3 f)] /.
Let A be the union of any n, of the events E, ... , E,, and B be the union of any
ny, others, so that A(A) + A(B) = (ne+ns) - A(S)/n < §*, and also

(o (A; f) — Por (A5 f)] — [D0r (Bs f) — D2(B; f)] = A.58)
- [Br (S5 £) = B (S: )] 1 — e [B00(S5 1) — B(S; )] /0 = v/

Define f(-) = [z” on A;x on B; f(-) elsewhere] and fr() = [z’ on A U B;
f(-) elsewhere] so 6(fr, f) < AMA)+A(B) < 6* and §(fr, f) < AMA)+A(B) <
0*. By (A.57) we have

(A.57)
<

W(fe(-)) =W (fr()) > (A.59)

Loy [6(fr, [)+8(fr, )]
A(S)- (nq+mnp)

Do (As f) = Pur (As f) = P (Bs f) + Pu(B; f) —

37 [A(A) +A(B)]
A(S) - (na+ny)
To prove the “only if” direction, consider arbitrary =" > 2’ > x, f(-) and value
L < [Dy(S; ) — Pu(S; )] [@w (S5 f) — Pur (S5 f)]. Select ng,ny such that
[D2/(S5 f) = Pu(S; )]/ [P (S5 f) = P (S5 f)] > na/mp > L, and positive 7
suchthat 7 = ng - [Py (S; f) =P (S; ) +7-AMS)]—np - [P (S; ) — P (S; ) —

1n-AMS)] < 0. By (19) there exists §** > 0 such that §(f, f) < §** implies

> y/n— = /n—3/n = 5/n >0
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W) =W EE) = [ X @ (71 @) 1) =Y @ (571 @) 1) |
zex zex

< 4on-5(f0), 10) (460
Select positive & < min{d**/(nq + np), A(S)/(ne + np) }-
Let {E4,..., E,} be an arbitrary e-partition of S, which implies n > A(S)/e
> ng, +np. By a standard combinatoric argument, there are K = n!/(ng! - ny!-
(n—ng—nyp)!) pairs (A, B) such that A is the union of n, of the events Fj, ... , E,
and B is the union of n;, others. Let K = {(Ag, Br) |k = 1,... , K} be the family
of all such pairs. Since each event E; will be included in Ay, for exactly (ng/n)- K
of the pairs in K, and will be included in By, for exactly (ny/n) - K others, we have

S [quk; 1) = @ar (A )+ 1M AR)]
=3 (na/n) K [@un (B [) = @ur(Bsi /) + 0-A(E)] - (A6D)
= (na/n)'K' [q)x”(s; f) — Dy (Sa f) + 77)‘(8)]

K

Zk 1[¢$’(Bk§f)_qsz(Bkhf)_n')‘(Bk)}
—Z (no/n) - K - [@40(Ey; f) = (B3 ) — 1-M(E;)] (A61)
= (np/n)- K- [D2/(S; f) — D2(S; f) — n-A(S)]

so that
K Doyrr (A f) = Por(Aks ) = Por(Bis f) + (B f) +n- (MAk) +A(By))
2 K
= (na/n)- [qjac” (S f) =P (S5 f) + 77)‘(8)] (A.62)
—(np/n) - [D2:(S; f) = Po(S; /) =n-AS)] = 7/n

This implies that at least one pair (A;, B;) satisfies

Do (Aps f) = Pur(Aps f) = Pur(Bys )+ P Bys )+ (AM(AR)+A(By)) S% (A.63)
Define fr(-) = [z" on Aj;2 on By; f(-) elsewhere] and fr(-) = [z'on A
UBy; f(-) elsewhere], so 6(fr, f) < AMAp) + AM(Bj) < (ng +np) - < 6%*
and 0(fr, f) < AM(A;) + A(Bj,) < (ng+ny)-€ < 6**. By (A.60) and (A.63) we
have that W (+) is not willing to accept the spread from fr(-) to f1.(-), since

W(fL() =W(fr()) < (A.64)

Du(Apf) = Pur(Ajif) = Por(Byi f) + Pl Bys f) + 50 (8(fr. f) +(fr, f))
< 7/n—n-(MA)+A(B)) + 572-(MAp) +A(B;)) = 7/n < 0

(@) = (d): Say Viy«(P) > Viy+(P) where P differs from P by an z « 2/ —
2’ probability spread for 2" >~ z’ > x. We can write P = (z,p; 2/, p'; 2", p";
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T1,P15--- axnapn) and 13 = (x,ﬁ;x’,ﬁ’;x",ﬁ”;xl,pl; R 7xn7pn) forﬁ > D,
p<p,p’ >p”andp+p +p' = ﬁ+ﬁ +p” —ﬁ Deﬁnetheintervalsp [0,

pl;
o =@p+r] " =@+p.0l,0=100,p],¢" =®p+9],¢" =B+0D),
p1 = (D, D+p1], p2 = (p+p1,p+p1+p2],--- s n (p+p1+ A pn-1,1];
and define the almost-objective acts
Jm(:) =[x on pxS;a’on p'x S; 2" on "X S; w100 P1XS; ... 2, 0N P, XS]
(A.65)
fom(-)=[2 on PxS;a’on H'xS;x" on xSz 0n P1XS;. L xy, o0 XS]

Since nll_I)IgQW*(fm()) = Vig+(P) > Vip«(P) = Jim W*(f,,.(+)), there exists

some m* and v > 0 such that W*(f,,(-)) — W*(f,n(-)) > ~ for each m > m*.
Select € € (0, 1) small enough so that both the following relationships hold

1-¢ o ~v/4
1-— 1 P S
( 1+€> (ﬁ—p (+e) “3) S hp

1 _
(12 —1)-(1—1—5)@;%3 < 7/4

(A.66)

’.@)
’U

For each m, define the parametrized family { f7"5(-) |a € [p",§"], 8 € [p, p]} by
glﬁ() = [;v on [0 ﬁ]xS x’ on (B,p — a]xS 2 on (p—a p]xS (A.67)
ryonp;XS;... 1, on pnxS]

so that for each m we have £, (-) = f,u(-) and [, 5(-) = Fn ().

By an argument similar to that in Machina (2004, pp. 39-41) we can select large
enough m** such that for any m > m**, the partial derivatives W (f7'5(-))/0cx
and OW*(f'5())/Ocx exist and satisfy

W (f25()) /00— [00(8: 1) — 20(8:129)]|

< € @x,, 1S < € [¢w” (Sa f(zfﬁ) - dsz' (87 fc,yrfﬁ)]
(A.68)

oW (i) /00 = [#20(Si£25) = B2(S: 29|
< eBls < e [ENS) - LS

at all but a finite set of values of « (where these values are independent of (3), and
the partials OW (f1'5(-))/08 and W*(fl'5(-))/ 0 exist and satisfy

W (£24(9) /08 = [@(S5 1) — ur(S £ )H

< e Duus < 5'[@$’(S;fg?ﬁ) D,(S; a/j)]
oW (125()) /08 — [@3(S; f25) — 3 (S: 1225)]|

< e li,s < e [OL(Si i) — OS]

(A.69)

at all but a finite set of values of 3 (where these values are independent of «).
Since ¢ < 1 this implies OW (f5(+)) /Occand OW* (£ 5(+)) /Ocx are both positive
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al

values, so W*( ap(1) and W (£ 5(+)) are each strictly increasing in ov and strictly
decreasing in (3.

Select arbitrary m > max{m*, m**} and define v, = W*(f,,(-)) = W*(f,n ("))
> . For each 3 € [p,p], define «(/3) as the unique solution to W*(f5 5(-))

= W*(fm (")) + Ym (B — p)/(p — p), so the mapping a(-): [p,p] — [p",p"] is
continuous, strictly increasing, onto, and o’ (/3) exists and satisfies

o (B)-OW*(falig),5() [0a + OW*(filis) 5(-)) /08 = —’”p >0 (A70)

and OW (f'5(: ))/85 and 8W*(fmﬂ(o))/aﬂ are both negative except at these
)

at all but a finite number of values of 3. By (A.69) we have

aw*( a(ﬁ)ﬁ())/aﬂ > —(1+¢) [ A(S; falgy.8)— D3 (S; f;”(ﬁ),g)]

> —(1+¢)- 8, s (AT1)
and thus by (A.70), that

o' (B)-0W*(fats) 5()) /0 = v /(B —p) = OW*(fii5) 5(-)) /OB
< m/(p—p)+ (1+e)P), s

at all but a finite number of values of 3. By (A.70), (A.71), (A.72), (A.66) and
Ym > 7, we have

(A.72)

l—¢ / m l+e

= a/(B)-OW*( g%g)ﬁ)/aa + 8W*( ﬂg)g)/aﬂ (A.73)
1+e

(1= 15 () W 5) 00+ (T — 1)- W[ 5),5)/08

> — —(1- | ——+(1+e @Im — —1)-(14€) P,
2 (1) (e 00 Bl )~ (1~ 1) (40) Bl

1—¢ v v/4 /2
> - —(1 )( + (14+e) B ) > 2 5
H—p I+e/ \p—p () Do p—p  H-p

The above inequalities and (57) imply that at all but a finite number of values of 3,
we have:

a’(ﬁ)-@W( Zég),g('))/anraW( ;’E,a),,g('))/@ﬁ
> (1_5)'0‘/(/6)' [@z,, (S' fmg)ﬁ) — Dy (S§ fﬂg)ﬁ)]
—(1+¢)- [ (S; a(g)ﬁ) x(S;fZ{Eg),g)}
= [P (S: filg),0) — P (S5 a(ﬁ)ﬁ)}

/ (S5 [y .5) — (S5 gy 5)
.[(1—5)-a(6)—(1+5) ,,(Sf(f:g) w’(‘g;f;(n(ﬁﬁ))i)}

[Parr (83 £ g),6) — Pt (S ;w) 8] (A74)

, P2 (S Fiip)) = P2(Si L) )
.{(1—5)-(1 (6) = (1+e)- 45*,,(3 o Egg) D, (S; a(ﬁ)ﬁ)}

v




‘Expected utility/subjective probability’ analysis without the sure-thing principle 57

) (120 o0) (025 )~ 05055
L3S filis) 0) — P (S5 flliy 9]/ [P (S5 i) 5) — B (S3 fllp) )]
7 (IL+e)-[2(S; a(ﬁ) 5) Py (S; Tal a(B), 5)]

([D3/(S; Fllisy.0) — P (S f i) 9)] ] (@ (S5 i3y ) — Par (S5 Fltt ) )]

1—¢ o (8)- W*(f;yzﬂ),ﬁ) n 1+¢ ?W*(ffj}g),,@)
- 1+e 8a 1—¢ ap S /2 Loigrs
@ (S a(ﬁ) ﬂ) 45:’ (87 fgzﬁ),ﬁ) f) —p @I”,I/,S
Do (S falpy,0) — Po(Si fills) )

We thus have

W(fm<-))—W(fm(->) = W(fa(p),po)—W(f;’“g,,%,,(-)) =
/de( ) g - / L a(5).5) 3W(§?ﬁ>ﬁ>} dp
> (v/2) (Lo rs/ Prnas) > 0 (A.75)

Since m was an arbitrary integer greater than max{m*,m**} we have
Jim W(f(-)) > lim W(fn(-)), and hence that Vi (P) > Viy (P).

m— oo

(a) = (e): Given events A, B satisfying the stated likelihood properties, arbitrary
" = x' = x and arbitrary f(), define fr(-) = [z on A; z on B; f(-) else-
where], fr(-) = [’ on AUB; f(+) elsewhere] and v = W*(fL(-)) —=W*(fr(-))
> 0. Select positive ¢ < min{1/4,v/(16-®%, 2p)}s sothat2-e/(1+¢) <1/2
and (4-¢/(1—¢))- @}, 5 < 8¢, 5 <7/2

For each m, define the parametrized family of acts { f}'5(-)|c, B € [0, 1]} by

ws(-) = [2" on [0, )X A; 2’ on (v, 1]><A AT6)
z on [0, 8]x B; 2’ on (3, 1]x B; f(-) elsewhere |

so that f"(-) = fr(-) and §(f§%, fr) = O for each m. The likelihood prop-
erties of A and B imply both (@}, (A; fI'5) — D5 (A; [ )]/ [P0 (S; fig) —
o (Si [a)] < pa < [P (As [725) =P (A; f1725)]/ [P (S i 5)—Par (S5 f25)]
and [P (B; f'5) — P3(B; [ p)l/[@0(S; falp) — P2(Sifals)] = mo =
(Do (B; [75) — Pa(Bs [0 3)]/ [P (S5 [ 5) — P (S5 £ 3)] for all m and all ov, 5.
By an argument similar to that in Machina (2004, pp. 39-41) we can select a large
enough m such that the partial derivatives OW (f7'5(+)) /Ocacand OW*(f1'5(+)) / Ocx
exist and satisfy

oW (52250)) /00 = [ (43 £5) = @ (A £725)]|
< IS @mu z/, A < g [éx”(fL a,ﬂ)_éai (A l;nﬁ>:|
(A.77)
oW (75 ()) f00r — [0 (A; £2) — 25 (A 12|
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< g - @ww ’A < [ z//(A fm) @:/(A7 C’;T?ﬁ)]

at all but a finite number of values of « (where these values are independent of (),
and the partials OW (f5(-))/08 and OW*(f1'5())/Op exist and satisfy

W (125()) 108 — [@a(B; fi2) — @ (B; £225)]|
< a'gz’,w,B < [QS (B «a 6) £(vig?ﬁ)]
(A.78)
W (£215()) /08 — [@3(B: i) — P(B: f5)]|
< &= QZ’,:}C,B < ¢€- [@if, (B; fars) — P} (B; gbﬁ)]
at all but a finite number of values of 3 (where these values are independent of «).
Since € < 1/4, this 1mphes that OW (f'5(- )/Oa and OW*(f15(+))/Oc are each
positive and OW (f75()) / 9B and OW*(f7'5(-)) /03 are each negative except at

these values, so that W*( ars(r)) and W(f2s ()) are each strictly increasing in a
and strictly decreasing in (3.

For each §# € [0,1], let «(f3) be the unique solution to W*(fi5 5(-) =
WH(fio(+)) + - B, so the mapping a(-) : [0,1] — [0, 1] is continuous, strictly
increasing, onto, and o’ (3) exists with

a’(ﬁ)-aW*(fg”(ﬁm(-))/aa + OW( a(ﬁ)ﬁ())/(’)ﬁ =7 >0 (A79)

atall but a finite number of values of 3. Since (A.78) implies OW*(f7(5) 5(-))/0p
—(1+4€)-[@F (B; o(8).8) ¥ (B; a(ﬁ)ﬂ)] —(14€)- D%, .+, We also have

o/ (B) - OW*(fllg) 5()) /0 =y = OW*(fls 5(1)) /0B <y +(1+e) 27, 5
at all but a finite number of values of (3.

The above inequalities imply that at all but a finite number of values of 3, we have

e (3)-OWH (1215 0) 00+ T OW* (1 243,5() 08

= (9)-0W (£l ()0 + W (1,() 05

(
20O 1y ) 00+ 2 oW (fm () /08

2 € — (A.80)
?'(1 JFE)'@:-/J,B

2~5 — 1+¢
oy —2.e.0% —92.¢.
v € zx, B € 1—¢

=Pl > 7 —/2=7/2 =0

Bk
'gpﬁw B

T1xe 1z

The above inequalities, the likelihood properties of A and B, and (57) then imply
that at all but a finite number of values of 3, we have

o/ (B)-OW (£ai),5()) /0 + 3W(f;"g) 5())/08

> (1—¢)-a(B): [P (A; (), 5) = Pur (A5 [N (8), 5)]
—(1+2) [P (B; fi),8) — P=(B; fa(),8)]
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ooy, Do (A5 fls) ) — Do (A5 7 (5)ﬁ)
) (1-¢)a (5) B0 (B 17 5) — Ba (B [ ) —(1+¢)
a 1/[P2(B; [a(s),8) — Px(B; [a(),5)]
oy P TS T ) — P (SiFaig) p)
N (1 6) (ﬂ) 2% (8 f (@),5) ‘Pw(S?ngg),g) (1+5)
B /[P (B; fa(s),8) — P=(B; fi(s),5)]
e Pa x“(Safa(g),g) -5 (S'fmg),g) B
N (1 5) (5) D (S'f&n(g) 5) (S a(ﬁ) g) (1 +€)
- 1/[@x (B; ﬂﬁ)ﬁ) P2(B; fa(p),0)]
or, D%, (A; f
(1 —¢)-a/(8)- E ; ((B T )) —(1+¢)
> (A.81)
1/[® z( ; a(ﬁ),ﬂ) P4(B; fo (5)5)]

) (L= 2) -0/ (B) - [ 85 (A; 70 ) — B2 (A5 f )
B [QB;'(B;ngg),ﬁ) - ¢;(B'fmﬁ) ﬁ)]/[‘pm’(B' gf,@) ,@) (B Tol (8), ,@)]
(L+¢)- (25 (B; a(8), g) PL(B; o 3), g)]
195(B; fils).5) — Pu(B; fals),6)l/ [P0 (B: filis) 5) — Pa(B: filis) )]
il e
[P (B; f(;nﬁ) ﬁ) — &,(B; fm@) ﬁ)]/[¢ /(B; a(ﬁ) ,3) Du(B; fo (8), ,3)]
Since o/ (8)-OW (f3i5) 5(1))/0a + OW (fli5) 5())/0B > 0 at all but a finite

number of values of 3, we have

W(fL()) = W(fr() = W5 () = W(fis() = (A.82)

{WUaion8) g5 [Mar). 2 stors) |, MWUslo))
[ =5 [ o= oy )48

> >0
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