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A STRONGER CHARACTERIZATION OF DECLINING RISK AVERSION

BY MARK J. MACHINA'

1. THE ARROW-PRATT AND ROSS CHARACTERIZATIONS

THE HYPOTHESIS that absolute? risk aversion is a nonincreasing function of initial or
“base” wealth is one of the fundamental assumptions of the theory of individual behavior
toward risk, and has been adopted or suggested by virtually every researcher who has
addressed the question of wealth and risk aversion (e.g. Arrow [1], Hicks [6], Pratt [13],
Raiffa [14], Yaari [20]). The standard behavioral characterizations of declining risk
aversion, due to Arrow [1] and Pratt [13], are:

A If x,Ax >0, E[é] =0, and 7y, 7, are such that x — 7y~x + € and
x +Ax — 7y~x + Ax + € then my > =7, and

if x,Ax,r>0, E[€]=0,%=x+ r + € and ay, a yield the most preferred
(A2) distributions of the form (1 — a)x + af and (1 — a)x + Ax + aZ respectively,
then o) < a;,

where “~” denotes a stochastic variable, “~” denotes indifference between two random
wealth distributions, and E[-] denotes statistical expectation. The well known interpreta-
tions of these conditions are (A.l) that the premium = that the individual would be just
willing to pay for complete insurance is a nonincreasing function of base wealth, and
(A.2) that in allocating a quantity of investible funds between a riskless asset and a risky
asset with higher mean return, the absolute demand for the risky asset is nondecreasing in
the level of investible funds. Arrow [1] and Pratt [13] have shown that if the individual is
an expected utility maximizer with twice differentiable concave utility function U(-), then
these two behavioral conditions are equivalent to the mathematical condition:

(A.3) — U”(x)/ U’(x) is nonincreasing in x.

The Arrow-Pratt characterization (A.1)-(A.3) has been widely adopted in the litera-
ture. However, as Yaari has noted, the general notion that “greater wealth can never lead
to greater risk aversion . ..is not really an axiom, but a heading for a whole class of
possible axioms which, while similar in spirit, may differ greatly” [20, p. 320].3 In
particular, Ross [15] has recently called attention to the fact that the real world seldom
offers the complete certainty that the above concepts of “complete insurance” and “risk
free asset” presume. Individual insurance contracts typically only cover losses due to one
or more specific causes (fire, theft, etc.), and while “complete” insurance via some
combination of policies may be possible in principle, it is typically not undertaken by
individuals. Similarly, once there is any uncertainty about future price levels or future

T would like to thank Vince Crawford, Peter Diamond, Frank Fisher, Ted Groves, Luis Guasch,
Eric Maskin, Stephen Ross, Joel Sobel, and an anonymous referee for helpful suggestions on this
material, and the National Science Foundation and Social Science Research Council for financial
support. Responsibility for errors is mine.

2Throughout this paper we are concerned solely with the relationship of absolute risk aversion to
wealth, and not with the less widely maintained hypothesis of increasing relative risk aversion (see
Arrow [1, pp. 94-109] and Stiglitz [18]).

3See, for example, Yaari [20], Mayshar [11], and Zubiri [21] for alternative approaches to the asset
demand condition (A.2).
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relative prices, no nominal or real asset can be completely risk free. It is thus clear that if
any characterization of declining risk aversion is to be relevant, it must be strong enough
to imply “decreasingly risk averse” behavior in a world of partial insurance, uninsurable
risks, and no riskless asset.

Ross has shown that, for the general class of actuarially neutral risks,* the Arrow—Pratt
characterization does not meet this requirement. For example, it is possible for an
individual to satisfy (A.3), yet still be willing to pay a higher premium for insurance
against a given risk € as the result of a constant increment Ax to a stochastic base wealth
X. Similarly, if such an individual is allocating a fixed amount of funds between two risky
assets, one with a higher mean and greater risk than the other, a constant increment to ex
post wealth may lead to a reallocation of the original investment funds in favor of the less
risky asset. In light of this, Ross has offered the following pair of stronger behavioral
conditions:

If %,Ax >0, E[¢|x] = 0 for all x, and 7y, 7, are such that £ — 7y~ % + €

B.1
(B-D andX + Ax — 7;~X + Ax + &, then 7y > 7, and
if %,Ax >0, E[Z|x]> x for all x, and ag, @, yield the most preferred
(B.2) distributions of the form (1 — a)X + «Z and (1 — a)X + Ax + aZ respectively,

then [ %)) S Ay,

and has shown that they are exhibited by any risk averse expected utility maximizer
satisfying:

U (x,)/ U"(x,) < U"(xp)/ U’(x,) for all x,, x,, (or equivalently, that

B3
(B-3) — U"(x + ¢)/ U’(x) is nonincreasing in x for all ¢).

While this reformulation is clearly a step in the direction of realism, it still possesses a
particularly unrealistic aspect, namely the requirement that the increment Ax to base
wealth be nonstochastic. Consider the following, for example:

(a) If sources of income or wealth are in general stochastic, then any increment in
wealth due to the acquisition of a new or additional such source (e.g. inheritance of a
stock portfolio) will be similarly stochastic.

(b) In the case of a single source of wealth, say the ownership of a firm’s profit stream,
the exact increment due to some beneficial change (e.g. a shift in preferences towards the
firm’s product) will often depend on the values of other random variables in the economy
(aggregate income, prices of substitutes, etc.).

(c) Finally, even if the pre-tax increment to a stochastic initial wealth were a constant,
if the tax schedule is nonlinear, then the post-tax increment will be stochastic.

Since it will be shown that condition (B.3) is insufficient to imply decreasingly risk
averse behavior when wealth increments are stochastic, it follows that the Ross character-

“In the special case where the risk € is exactly stochastically independent of a random initial
wealth %, Kihlstrom, Romer, and Williams [8] have shown that (A.3) is sufficient to ensure that a
constant increment Ax will lower the risk premium 7. However, since the work of Rothschild and
Stiglitz [16, 17] it has been clear that the class of independent additive risks is but a small subset of
the class of general mean preserving increases in risk, which are characterized by the addition of any
€ satisfying E[€| x] = 0 for all x. See McFadden [12] for an argument why individuals might tend not
to view additional risks and base wealth as independent (or uncorrelated), as well as the related work
of Hildreth [7] and Levy and Kroll [9].

5Ross [15] also gives a related strengthening of the Arrow—Pratt characterization of comparative
risk aversion between individuals (see also Kihlstrom, Romer, and Williams [8]).
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ization is still too specialized (i.e. applies to too small a class of situations) to have any
effective predictive power. Similarly, it is hard to think of any positive or normative
arguments for the decreasingly risk averse behavior described in (B.1) and (B.2) which
would not also suggest declining risk aversion in cases where the distribution of base
wealth undergoes a general rightward shift, as opposed to an exact horizontal translation.
Indeed, the maxim that economic models should be robust to the general uncertain nature
of all economic variables ought to apply first and foremost to those which explicitly
purport to describe behavior toward risk.

The purpose of this note is to characterize the phenomenon of declining risk aversion in
a world where neither initial wealth nor wealth increments are necessarily nonstochastic,
by considering the natural extensions of the above risk premium_and asset demand
conditions to the case of a stochastic nonnegative wealth increment Ax. Surprlslngly, it is
found that unless the individual happens to be globally risk neutral (i.e. risk aversion is
constant at zero), the hypothesis of expected utility maximization is too restrictive to allow
the individual to exhibit nonincreasing risk aversion in this more general (and presumably
more realistic) setting, although such behavior may be exhibited by individuals with more
general preferences over random wealth distributions. Besides offering a simple mathe-
matical characterization of preferences which exhibit decreasingly risk averse behavior in
this more general sense, we show that under suitable regularity conditions the generalized
insurance premium and generalized asset demand conditions continue to be equivalent
characterizations of behavior.

2. “GENERALIZED NONINCREASING RISK AVERSION”

In light of the above discussion, we adopt the following behavioral characterizations:

If £,Ax >0, E[¢|x] = E[e|x+Ax] 0 for all x, x + Ax, and 7y, 7, are such

C.1
©h that £ —7y~X + €and ¥ + Ax - T ~X+ Ax + ¢, then 7wy > 7, and

if ,Ax,r >0, E[¢|x] = E[¢|x + Ax] = 0for all x, x + Ax, 7= % +r + ¢ and
(C2) ag, a; yield the most preferred distributions of the form (1 — a)X + aZ and

(1 — a)% + Ax + aZ respectively, then ag < a;.%”

Two aspects of these conditions are worth noting. First, for reasons discussed in footnote
4, we adopt the new condition E[€]|x + Ax]= 0 so that the addition of & represents an
increase in risk with respect to both the original and the new distributions of base wealth
(i.e. both X and % + Ax). Second, although (C.2) formally represents Ax as an increment
to ex post wealth (e.g. the acquisition of a nonsaleable asset), it includes as a special case
increments in the level of investible funds. To see this, note that a proportionate increase ¢
in the level of investment funds will increase the absolute demand for the riskier asset if

5Note that the present characterization of 7 as “riskier and with higher mean return than x” is not
the same as used by Ross (condition (B.2) and [15, pp. 631-33, 637-38]), who (in our notation)
requires merely that E[7|x]> x for all x. However, this latter condition is not sufficient to ensure
that 7 is in any sense riskier than, or even as risky as, x (e.g. let Z take on a constant value to the right
of the support of x).

7 Although this condition assumes no risk free asset, it does assume that the individual has only
two assets to choose among. Cass and Stiglitz [2] and Hart [5] have shown that with a risk free asset
and two or more risky assets, the Arrow-Pratt condition (A.3) is not sufficient to ensure that the total
demand for risky assets increases with wealth. Because we are concerned here with an essentially
unrelated aspect of the notation of declining risk aversion, we do not consider the case of one riskless
and two or more risky assets.
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and only if the value of a which yields the most preferred distribution of the form
(1 — @)% + 1% + o is greater than ag, which since ¢£ is nonnegative and E[€|x + tx] =0
if and only if E[€|x] =0, is a special case of (C.2). By contrast (and continuing to assume
no riskless asset), the case of an increase in investible funds is evidently not a special case
of the Ross condition (B.2).%

In modelling this more general type of behavior we retain the standard choice theoretic
assumption that the individual chooses among alternative wealth distributions as if
maximizing a preference functional V(F) defined over the set D[0, M] of all cumulative
distribution functions F(-) over [0, M], where M < co may be arbitrarily large.® If the
individual’s preferences satisfy the axioms of expected utility theory, we can represent the
preference functional as having the form V(F)= [U(x)dF(x),'® where U(-) is the von
Neumann-Morgenstern utility of wealth function. In other words, V() can be repre-
sented as a linear functional over D[0, M], or as commonly phrased, as “linear in the
probabilities.”

Although the expected utility axioms are often regarded as normatively appealing,
unless the utility function U(-) is itself linear (i.e. risk aversion is identically zero), the
expected utility hypothesis is incompatible with the (perhaps equally appealing) condi-
tions (C.1) and (C.2). Although this will follow formally from Theorem 1, the intuition
may be gleaned from a simple example. Let the triple (X,Ax,¢) take on the values
(x*,d,0), (x*,0,e), and (x*,0, —e), each with probability 1/3, where x*,d, e > 0, so that
this joint distribution satisfies the conditions of condition (C.1). Thus the risk premia =,
and «; will solve:

0)) U(x* — mp) = U(x* + e) + U(x*) + U(x* — e)]

and

) LUx*+d—m) +2U(x*— 7)) = U(x*+d) + U(x* +e) + U(x* — e)]
so that

3) [Ux*+d)— U(x*+d—m)] - [U(x*) — U(x* — 7))]

=3[U(x* — 7)) — U(x* — mp)l.

In this case, if the utility function is increasing and strictly concave in the relevant
neighborhood, the left side of (3) will be negative, which implies 7, > 7. Similarly, if
U(-) is increasing and strictly convex, m, and «; will be negative, so we again have
@, > m,. Since the magnitudes of d and e may be arbitrarily small, it follows that unless
U(-) is linear in the relevant neighborhood (so that =y = 7, = 0), an expected utility
maximizer cannot even satisfy (C.1) “in the small.”

The intuition behind this incompatibility is straightforward. Recall that the risk
premium = is such that the loss (gain) in expected utility from paying (receiving) the
premium exactly equals the loss (gain) in expected utility from bearing the risk €.
However, in the case of concavity, to the extent that the increment in wealth occurs in
states of nature different from those in which the risk occurs (as in the example), it will
serve to drive down the (expected) marginal utility of wealth while leaving the loss in
expected utility due to the risk unchanged, thus increasing the size of the premium the
individual would pay to avoid the risk. In the case of convexity, wealth increments which
occur in states other than where the risk occurs serve to drive up the expected marginal
utility of wealth, which serves to lower the compensation the individual requires for giving

8The Ross characterization of increasing (or decreasing) relative risk aversion, however, does
include the case of an increment in the level of investible funds ([15, p. 638]).

9For simplicity, we assume M large enough so that the supports of all relevant random variables
(X, X + AX + ¢, etc.) lie in [0, M].

10Throughout this paper all integrals will be over [0, M] unless otherwise specified.
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up the risk (i.e. raises the value of = upwards toward zero). In other words, since expected
utility implies that preferences are separable in the state-contingent payoffs, an increase in
wealth in one state cannot in general affect attitudes toward risk in other states in a
manner sufficient to ensure generalized nonincreasing risk aversion, even when the wealth
increment Ax and the insurable risk € are “small.”

It might seem that abandoning the expected utility model is a high analytic price to pay
to achieve this more general characterization of declining risk aversion. However, in [10] it
was demonstrated that this need not be the case, and that it is indeed possible to drop the
assumption that V(-) is linear and, retaining only the condition that V() be a differentia-
ble function of F(-) (i.e. that preferences are “smooth”), directly adapt the main body of
expected utility analysis to individuals who do not necessarily satisfy the expected utility
hypothesis.

Specifically, we adopt the topology of weak convergence over the choice set D [0, M]
and assume that the preference functional V(-) is (once) Fréchet differentiable with
respect to F(-). In [10] this was shown to imply that there exists at each distribution F(-)
in D[0,M] a “local utility function” U(-;Fy) over [0, M] such that for any other
distribution F*(-) in D[0, M],

Q) V(F*) = V(Fo) =fU(w; Fo)ldF*(w) — dFo(w)] + o(|| F* — F)),

where o(-) denotes a function of higher order than its argument, and || - || is the standard
L' norm. Thus, just as with differentiable functions over R", the difference V(F*)—
V(Fy) is seen to consist of a first order (i.e. linear) term in F*(-) — Fy(-) plus a higher
order term, with the linear term representable as the difference in the expectations of the
local utility function U(-; Fy) with respect to the distributions F*(-) and Fy(-).

It is also clear that, just as in standard multivariate calculus, many of the local
properties of the preference functional ¥(-) about a given distribution Fy(-) are deter-
mined by the properties of the local utility function U(-; Fp), so that, for example, if
U(x; Fp) is concave in x, the individual will be averse to all small mean preserving
increases in risk about the initial distribution Fy(-). It was also shown in [10] that such
relationships often had global extensions: for example, a necessary and sufficient condi-
tion for a Fréchet differentiable preference functional V(-) to be averse to all (small or
large) mean preserving increases in risk is that the local utility functions U(x;F) be
concave in x for all F(-) in D[0, M].

Following Arrow—Pratt and Ross, we assume that the first and second derivatives
Ui(x; F) and U;(x; F) of the local utility functions exist and are continuous in x, with
U,(x; F) everywhere positive."! In addition, because the study of other than “regular”
optima in the asset demand case is beyond the scope of this paper, we adopt the following
condition, a generalization of the condition that indifference curves in the (g, p) plane are
upward sloping and bowed downwards, which serves to rule out both risk lovers (who
would always choose a = o0) as well as “plungers” as in the classic study of Tobin [19]:

DEFINITION: A risk averse individual is said to be a diversifier'z if, for all £, % > 0 such
that 7= % +r + & with r > 0 and E[&|x] =0 for all x, the individual’s preferences over
the set of random wealths {(1 — a)% + a£} , are strictly quasiconcave in a."

!In [10] the condition U,(-; F) > 0 was shown, as in expected utility theory, to be a necessary and
sufficient condition for ¥ (-) to exhibit “monotonicity,” i.e. weak preference for first order stochasti-
cally dominating distributions.

I2Because of the different contexts, this differs from the definition of “diversifier” used in [10].

13This condition ensures that preferences are either strictly monotonic in «a or else that there is a
unique optimal a and that preferences are strictly increasing in a_below this value and strictly
decreasing above it. Note that this condition implies that if (X,Ax,Z) satisfy the conditions of
condition (C.2) then preferences over the set {(1 — a)x + Ax + az}, will also be strictly quasicon-
cave in a.
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Although we do not restrict short sales of either asset, it is clear that the optimal « for
any diversifier will be nonnegative. We thus have:

THEOREM 1: The following two properties of a Fréchet differentiable preference functional
V(-) over D [0, M] with twice continuously differentiable local utility functions U(-; F) with
U\(-; F) > 0 are equivalent:

(i) the term — Uy \(y; F)/ [U\(w; F)dF(w) is everywhere nonincreasing in y and F(-) (i.e.
= Un(y*; F*)/[U(w; F*)dF*(w) < — Uy (y; F)/ [U\(w; F)dF(w) whenever y*> y and
F*(-) equals or stochastically dominates'* F(+)); and

(ii) the insurance premium condition (C.1).

If the individual is a diversifier, these conditions are in turn equivalent to:
(iii) the asset demand condition (C.2). (Proof in Appendix.)

Condition (i) of the above theorem has a straightforward interpretation. Starting from
an initial distribution F(-) we have that, just as in expected utility theory, the term
— 3 Uy (y; F) gives the effect of an infinitesimal increase in risk about the outcome value
» on the expectation of U(-; F), and hence, by (4), on ¥(-). Similarly (and again starting
from F(-)), the term — [U,(w; F) dF(w) gives the effect on V(+) of a differential premium
payment. The ratio — 3 U, (y; F)/[U\(w; F)dF(w) thus gives the value of the premium
that individual would be just willing to pay to avoid a differential increase in risk about
the outcome value y.

Now, if the individual is to exhibit generalized nonincreasing risk aversion, the shift in
the distribution of base wealth from F;(-) to Fz, 5(-) (using obvious notation) must not
increase the value of this premium. If the risk we are considering occurs in states of nature
where Ax = 0, it will continue to occur about the outcome value », so that the stochasti-
cally dominating shift in F(-) from Fg(-) to Fz, 55(+) should not increase the value of the
term — U, (y; F)/[U\(w; F)dF(w). If the risk occurs in states where Ax > 0, the outcome
value y about which it occurs will also increase, so that increases in y should also not
increase the value of — U} (y; F)/[U,(w; F) dF(w). Since it is possible for either of these
effects to outweigh the other, we therefore require that — U, ,(y; F)/[U,(w; F)dF(w) be
nonincreasing in both y and F(-). Finally, note that while this heuristic argument applies
only to the case of a differential increase in risk, it turns out, as with the analysis of Pratt
[13], that condition (i) is necessary and sufficient for generalized nonincreasing risk
aversion “in the large” as well.

In [10] a simple class of nonlinear preference functionals over probability distributions
was offered, namely those of the form

— _ 1 2
) V(F) =fR(w) dF () = 5 US(w) dF(w)] ,
which are seen to be “quadratic in the probabilities,” and with local utility functions
() U(x;F)= R(x) = S(x) -fS(w) dF(w).
A simple example of this functional form is

) V(F) = [wdF(@) - % [fe“"dF(w)]z,

"4Throughout this paper, “stochastic dominance” refers to first order stochastic dominance (see
Hadar and Russell [3]). It is clear that the “nonincreasing in F(-)” part of this condition cannot be
satisfied by an expected utility maximizer for whom U”(-) is anywhere nonzero.



DECLINING RISK AVERSION 1075

with local utility function
®) ﬁ(x;F)=x—e_"'fe_“’dF(w).

Since ﬁ(x; F) is seen to be increasing and concave in x, it follows from Theorems 1 and 2

of [10] that 13(-) exhibits both monotonicity (see footnote 11) and global risk aversion. In
addition, since the term

= = . _wd
O -TuiP [ [T Fyare = <1 T

1+ [fe~“dF(w)]

is seen to be decreasing in both y and F(-),'* and since an individual with this preference

functional may be shown to be a diversifier,'® it follows that V(-) satisfies both conditions
(C.1) and (C.2) as well.

University of California, San Diego

Manuscript received July, 1980; revision received July, 1981.

APPENDIX

NotaTiON: In the following, F;, :(-), F; (-, -) denote the cumulative distribution functions of
X +¢, (x,2), etc,, and G,(+), G, 4(-, -) the distributions which assign unit probability to the points c,
(¢, d), etc. (See also footnotes 9, 10, 11, 13, and 14.)

PrOOF OF THEOREM 1: (i) —> (ii): Given the joint distribution of (X, E;c, €), let 7(a) solve V(F;,:
=V(Fi_z) =V((1 = )Fi ¢ na) + @F¢_py) and let F(,a)=(1 - a)Fg o n0(-) +
aF;_ . ay(+) for @ €[0,1], so that #(0) =0, #(1) = my, F(-,0)= Fz,¢(-), and F(:,1)= Fz_, (-).

From equation (4), we have that for all @ € [0, 1]

av(F(-,a))
O=—%

= = [ U@ FC )l dFe sz n@(©) = dFz—oaf@)]

— 7@ [ Ui FC a1 = @) dFep - pa®) + B dFsyqm(@)]

so that
—JU(w; F(+, &))[dF;+g_,,(&)(w) - dF}—w(a)(“’)]

10 (@) = .
0 = e FC. (= @ dFras (@) + adFs (@]

Defining F(:,a)=(1 — a)F;+A:+g_,,(a)(-) + aF; 4 55— nay(+) for a €[0, 1] yields

dV(F(',a))
da

=~ [U( FC @) dFes 5t i mia(®@) = AFis (@)

~w(@) - [ U0 FC @) = D dFes i nian(©)

+a dF;+A:—1r(&)(w)],

15The right side of (9) is clearly decreasing in y. Tt is also decreasing in F(-) since r/(1+ r?)is
increasing in r over [0, 1] and [e ~“dF(w) €0, 1] is decreasing in F(-).

1Tt is straightforward to verify that d2V(F (| _ 45 +47)/da* < 0 whenever 7 — ¥ is not identically
zero.
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which, since U|(w; F) > 0, has the same sign as
— JU(w; F(, a))[dF;+A~x+z—n(&)(‘*’) - dFi+A~x—1r(a)(w)]

[€0)) — —a'(@).
JU(w; F(-,&))[(l — ) dFg e nm(w) + adF)?+A~x—w(a)(‘*’)]

Substituting in (10), recalling that E[€|x]= E[¢|x + Ax] =0, and applying tedious algebra yields
that (11) is equal to

= Up(x+Ax —7(@) + r;F(~,rx))

If fo fosfo[ JU\(w; F(-,a))dF (o, &)

- U, (x —a(a)+ r; F(-,@))
- U@ (-, 2) dF (@, 3) dr- ds- dFE'{x.Ax(e | x, Ax)

—Up(x+bx —a(@) + r; F(-, 1))

0 0ro
+f_oofs fs [ JU\(«; F(+,@)) dF (0, @)

—Un(x —7(a) + r; F(- @)
JU(w; F(-,@)) dF (w,a)

wds - dFz |, ax(€] x, Ax) | dF; 5 (%, Ax).

Since A’;Z 0 and F(-,a@) equals or stochastically dominates F(-,&) for all @, it follows that
dV(F(-,a))/da|z <0 for all @ so that integrating this derivative from @a=0 to @a=1 yields
0> V(F(-, 1) — V(F(-,0) = V(Fzyax—ny) — V(Fz43x+¢), which by monotonicity (see footnote 11)
yields 7, < mg.

(i)—>(): Assume — U, (y; F7)/[U\(w; F;)dF:(w) <2B < — U (y*; F3)/[ U (w; F3)dF 7(w)
where y < y* and Fz(-) equals or stochastically dominates F;(-). Applying equation (4) and
simplifying yields

d P P
[V -PE+ 56,64 56,6) =V =PFpes 4 1G ) |

=1U(y +Ve s ;) +3U(y = e s Fr) = U(ys Fz) + eB - [ Un(ws; F7) dF5(w),
which, since lim,_o(1/e)[i U(y +Ve; Fs) + 1 U(y —Ve ; Fs) — U(y; Fs)l = 1 U, (y; F2), is positive

for small enough positive e. Replacing (y, F;) with (y*, Fz) and repeating yields that for some
p,e >0,

12 V(A =pF+ LG+ LG, i) > V(1= p)Fr_peg + PGy pe ). and
(13) V((l —p)FS+ gay.+¢;+ —g-Gy:,‘[g) < V((1 = PYFT o + PGy pep)-

By Theorem 1 of Hansen, Holt, and Peled [4] there exists a distribution Fj;(-, -) with 7,5>0 for
which F;(+) = F;(-) and F;,;(-)= F7(-). Let prob((7,5)=(y, y* — y)) = y. Defining F;5(:, )
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=(1-p)F;(-, )+ pG, e _ (-, -) and

1 1

Y_PY 2P 3P
Go(*) + Ge( )+ ———G_;(-
pHy—py o) p+v—py &) P Fr—pv =)

if (x,Ax) = ()), y* —y),

FE| \’A\'(‘ Ix’ Ax) =
Go(-) otherwise,

we have that the distribution functions of X + €, X —pef, x + Ax + ¢ and £ + Ax — peB are given by
the four respective arguments of ¥(-) in (12) and (13). This implies 7y < pe < 7, which is a

contradiction. ~
(i) (iii): If for some (¥, Ax, €) and r > 0 we had a; < ay, then since the individual is a diversifier

there will exist some positive a* € (a,, &) such that

d
O<E;(V(F{'+ar+ne_))

o
=foMf+w(r+ €) Up(x + a*r + a*e: Fo) dF: 5 :(x. Ax, €),
b Jo Joo

where F0(~) = F\~.+aa,+“‘g(-), Since U, F) > 0, this implies
r> - f”f“f“% Uy(x + a*r + a*e: FO)dF‘-.f\,g(x.Ax.e)-/
b Jo J-w v

[ [Muiei Fo dFow)]

_ (MM e a*e —U”(X+(X*I‘+S;FO) .
b UO h { JU (@i Fo) dFofw) }ds AP van(elx 0

0 o [ —Un(x+ a*r+s: Fy)
L9 { JU (@ Fo) dFo(®) }

“dFz) 1\ (€ | x, Ax)} dF 3 (x,Ax).

By (i), this implies

MMl roo rare —Un(x +Ax+a*r+s:F)
-dF: |, x,A
N T B e LR

0 o [ —Up(x+Ax+a*r+s:F))
+£w(_‘)fa*<{ JU (@i Fy) dF () }d’

’dFE|\.A\(flx.Ax)}dF\.‘;(x‘Ax)
= —[foMf+oo€. Ul(x+Ax + a*r+ a*e:F.)dF\-_j‘._(-(x,Ax.c)]/
b Jo Jow

UOMU,(w; F) dF,(w)}
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where F\(*) = Fz, 5%+ a*r+a+c(+). This then implies

0 <foMf+°°(r+ €): U(x +Ax + a*r + a*e; F)) dFg 55, :(x, Ax, €)
0 JO —

= % ( V(F€+A~x+zxr+a5))

’

a*

which, since a; < a*, contradicts the assumption that the individual is a diversifier.

(ili)—>(i): Assume — U, \(y; F;)/[U\(& Fp)dFg(8) < — Uy (y*; FR)/ [ U FiR) dFz(§), where
y < y* and F,;3(+) equals or stochastically dominates Fz(+). Since lim,_,o 3(U\(y + a; F3) — U(y —
a; F))/a= U, (y; F;) and similarly for y*, F3(-), we have that for some small positive @ and
positive B that

—s(U(y+ & F;)— Ul(y — & F;))
JU\(& F;) dF;(%)

<pB

—3(U,(y*+ & Fz) — Ui(y* — a; F3)
JU\(&; Fiz) dF(8)

Define
o, p) = V((1 = P)Fisppia—s + 1 PG+ (pp+ya T3 PGyt (pp-1)a )
and
o*(a, p)=V((1 = PIFF 1 ppa—m + 3 PG+ (pp+ ya + 3 PGy s (pp—1ya )-
Applying (4) and simplifying yields
$0p (&, 0) = BJU (& F) dF(§) + 3(U(y + & Fz) — U(y — & F;)) >0,
and
o3& 0) = BUWE F3) dF () + 3 (U(* + & F3) — Ui(p* — @ FR)) <0,
) whiph, since ¢,(@,0) = ¢%(@,0) =0, implies that ¢, (@, p) >0 and ¢¥(@, p) <0 for some small
positive p.
Since F: _pga(") stochastically dominates Fy; —ppa(*), we have by Theorem 1 of Hansen, Holt, and

Peled [4] that there exists a bivariate distribution F~ +(+, -) with 7,5 > 0 and such that

Fr(\)=Fi_pp(r)  and  Fros() = FF_5pa(°).

Let
prob((7,5) = (y, y* = »)) =7,
let
Feax( ) =1 = p)Fps(-, -) + G, e, (-, 0),
let

1= | =
-p ip 3P
PGy —E G+ =G ()
Frlean( IxAx) =] PHY=PY PrY=p T PHY Y
if (x,Ax) =(y, y*— y),

Go(+) otherwise,
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and let » = pB. Then for any «a,
V(Ferarvas) = V(1 = P)Faippa—a) + 3 PGys (pp+1)a + %ﬁGprlz-na)

= ¢(a, p)

and
V(F\7+’A~x+[xr+a€) = V((] _p)Fu:+ﬁB(a—&) +%pG_r‘+(ﬁﬁ+l)a +%pGr‘+(pﬁ—l)u)
=9¢*(a, ).

Since the individual is a diversifier and ¢,(a&, p) > 0 > ¢*(a, P), we have that the value of a which

maximizes V(Fg, .4 q¢) is greater than @ and the value which maximizes V(F;, iy 0 s00) IS less
than @&, contradicting (iii). Q.E.D.
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