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Researchers have shown that many, though not all, of the basic results of 
expected utility analysis can be more or less directly generalized to non-expected 
utility preferences. This paper describes the essential difference between results 
which can be extended in this manner and those which cannot and shows that an 
important family of comparative statics theorems falls into the former class. Journal 
of Economic Literature Classification Number: 026. % 1989 Academic Press, Inc. 

I. EXTENDING EXPECTED UTILITY RESULTS 
TO NON-EXPECTED UTILITY PREFERENCES 

In the last several years, researchers such as Chew [2], Chew, Epstein, 
and Zilcha [3], Chew, Karni, and Safra [4], Dekel [S], Fishburn [12], 
Karni [14, 151, Machina [I9], Machina and Neilson [22], and Neilson 
[26,27] have shown that many of the fundamental concepts, tools, and 
results of expected utility analysis can be extended to general non-expected 
utility preferences over probability distributions. The general idea behin 
this approach is a simple one and is essentially an application of standar 
calculus: Expected utility preferences over probability distributions exhibit 
the property of “linearity in the probabilities.” If an individual’s preferences 
over probability distributions are not linear in the probabilities, but are at 
least “smooth,” then at any distribution there will exist a linear approxima- 
tion to these preferences which, by virtue of its linearity, can be viewed as 
a “local expected utility” approximation to the individual’s preferences in 
the neighborhood of that distribution and represented by a “local utility 
function.” If this local expected utility approximation is risk averse-that 
is, if the local utility function at this distribution is concave-then the 

* I am grateful to Vince Crawford, Valentino Dardanoni, Eddie Dekel, John 
Edi Kami, Mike Ormiston, and anonymous referees for helpful comments on this material, 
and to the Center for Advanced Study in the Behavioral Sciences for financial support. 
Responsibility for errors is my own. 
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individual will be averse to all small (in the sense of infinitesimal) mean 
preserving increases in risk in the neighborhood of this distribution. If 
one non-expected utility maximizer’s local utility function at a given 
distribution is more risk averse (i.e., more concave) than a second 
individual’s, he or she will exhibit more risk averse behavior in the 
neighborhood of this distribution than will the second individual, and so 
forth. 

Of course, as with any linear approximation, the local expected utility 
approximation to an individual’s preferences at a given probability dis- 
tribution will only be exact for infinitesimally small changes from this dis- 
tribution. However, as in standard calculus, this approach can be extended 
to obtain exact global generalizations of many expected utility results. For 
example, if an individual’s local expected utility approximations at every 
distribution are risk averse, or in other words, if his or her utility functions 
are all concave, then he or she will be globally risk averse in the sense of 
being averse to all small or large mean preserving increases in risk. It is not 
necessary that the approximation to preferences at each distribution consist 
of the same risk averse expected utility ranking (i.e., that the local utility 
function at every distribution be the same concave function), merely that 
each approximation be some risk averse preference ranking (i.e., that each 
local utility function be some concave function). Since this condition turns 
out to be both necessary and sufficient for the property of global risk aver- 
sion, it implies that the “expected utility” characterization of risk aversion 
by the concavity of a utility function is completely general, in the sense that 
the o&y way for smooth non-expected utility preferences to be risk averse 
is to possess concave local utility functions.’ 

This approach, known as “generalized expected utility analysis,” can be 
formalized as follows:2 Consider the set g[a, b] of cumulative distribution 
functions F( .) over some outcome interval [a, b]. If the individual is an 
expected utility maximizer, his or her maximand or “preference function” 
over these distributions will take the form 

v(F) = ?‘” u(x) S(x), (1) n 

where u( .) is the individual’s von Neumann-Morgenstern utility function. 

i To take an analogy from univariate calculus, we know that the linear function 
g(z) z a+ b .z is nondecreasing provided b >O. The local extension of this result to a 
nonlinear but “smooth” (differentiable) function h(z) is that h( .) will be locally nondecreasing 
at z,, provided its local linear approximation h(z,) + W(Q). (z - zO) is nondecreasing (i.e., 
provided h’(z,) Z 0). The global extension of this result is that h( .) will be globally 
nondecreasing provided its linear approximations, though generally different at each z, are all 
nondecreasing (i.e., provided that h’(z) is SDWZ~ nonnegative number for each z). 

’ See Machina [ 191 for a more formal treatment. 
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Such an individual will rank the probability distributions F(. ) and FO(. ) 
on the basis of the sign of 

u(F) - u(F(J = 1” u(x)[dF(x) - dFb(X)]. (2) a 

Now consider a preference function V( .) which is not linear in the 
probabilities (i.e., in F(.)) but is at least smooth (formaily~ ‘“Frechet 
differentiable”) in the sense that at each distribution F,( .) it possesses a 
first order linear approximation of the form 

V) - w-0) = UF(.) -Fed.); r’hl + o(ll F-- Fo III, (31 

where L[ -; F,] is linear in its first argument, o( . ) denotes a function which 
is zero at zero and of higher order than its argument, and j/F-F, 11 is the 
standard L’ distance function ji I F(x) - F,(x)1 djc between cumulative 
distribution functions. Just as it is possible to represent any linear function 
of a vector as a weighted sum, we can represent the linear functional 
L[F(. ) - F,,( . ); F,] as a weighted integral, to obtain 

which, after integration by parts, can be represented in the form 

V(F) - V(F,) = 1” U(x; F,)[dF(x) - dF,(x)] + o( /I F-F0 /I ). (51 
a 

Comparing (5) with (2), we see that an individual with a smooth non- 
expected utility preference functional V( .) will rank differential changes 
from the probability distribution F,( .), that is, changes for which the first 
order term in (5) swamps the higher order term, according to their effect 
on the expectation of the local utility function U( .; FO). As mentioned 
above, this approach can also be used to obtain global extensions of 
many of the basic results of expected utility theory (see achina [ 19, 
Section 3.21 for a formal treatment). 

The aforementioned researchers and others have shown that this 
approach can be used to more or less directly extend the expected utility 
characterizations of the cardinality of the von Neumann-~orge~s~e~~ 
utility function, first-order stochastic dominance preference, risk aversion, 
the Arrow-Pratt characterization of comparative risk aversion between 
individuals, the Ross characterization of comparative risk aversion, 
Kihlstrom-Mirman characterization of comparative multivariate 
aversion, and even generic expected utility first-order ~~~ditio~s in choices 
over sets of probability distributions. 
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II. FIRST-ORDER vs SECOND-ORDER PROPERTIES 
OF PREFERENCES 

While this approach has accordingly proven quite useful, it cannot be 
applied to every result in expected utility theory. A simple example is non- 
increasing absolute risk aversion in the sense of Arrow [l] and Pratt [28], 
as characterized by the condition that the Arrow-Pratt index of absolute 
risk aversion -u,,(x)/u,(x) be nonincreasing in x.~ In Machina [ 19, 
pp. 300-3011 it was noted that the analogue of this condition, namely, 

d[ - U,,(x; F)/U,(x; F)]/dx < 0 for all x and I;(. ) (6) 
is root strong enough to imply that a non-expected utility maximizer’s risk 
premium for an additive risk E about an initial wealth of x will be non- 
increasing in x, even for infinitesimal risks B 

An analysis of why this result does not extend reveals an inherent limita- 
tion on the extent to which expected utility results can be generalized (or 
at least directly generalized) to non-expected utility preferences: From (5) 
we have that if V( .) is a smooth non-expected utility preference functional, 
then the premium rc(E”lx) that the individual would pay to avoid an 
infinitesimal zero-mean risk E” about an initial wealth of x is given by 

7c(E”I x) = $. var(E”) . [ - U,,(x; 6,)/U,(x; S,)], (7) 

where 6,( .) denotes the degenerate distribution which yields x with 
certainty (i.e., the individual’s initial wealth distribution). Differentiating, 
we have that the condition for an increase in x to preserve or lower Z(E” 1 x) 
for all infinitesimal risks E” is accordingly 

4 - UAW ~x)/K(w 6Jlldw I w = x 
+ 4 - u,,(x; ~,)luxb; ~,)lld~ Io=x < 0. (8) 

From the two terms on the left-hand side of this condition, we see 
that a change in initial wealth x has two effects on the infinitesimal risk 
premium (7). The first comes from the change in the outcome Zeuel x in the 
generalized Arrow-Pratt index - U,,(x; 6,)/U,(x; 6,) for fixed a,( e), and 
pertains to the shape of the local utility function U( -; 6,( .)), just as in 
expected utility theory. The second effect, however, comes from the change 
in the distribution a,( -) at which the local utility function, and hence its 
Arrow-Pratt index, are evaluated, and this effect does not have any 
analogue in expected utility theory. 

What is it about nonincreasing absolute risk aversion that makes it dif- 
ferent from the other, directly generalizable results mentioned above? The 
key distinction is between what we may term “first-order” versus “second- 

3 Throughout this paper, first and higher order derivatives with respect to x and/or G( will 
be denoted by the subscripts x and ~. 
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order” properties of preferences. First-order stochastic dominance 
preference and risk aversion, for example, refer to an individual’s attitudes 
toward a given type of change (a first-order stochastically 
or a mean preserving increase in risk) from a given probability distribution. 
Comparative risk aversion, in the sense of either Arrow-Pratt or 
Ross [29], applies to individuals’ relative attitudes toward changes fro 
some given probability distribution. Since they describe attitudes toward 
such changes per se (i.e., their sign or comparative strengths), such aspects 
of preferences may be termed “first-order” (or more precisely, “first-order 
in the probabilities”), and it is no surprise that the charactersics of their 
first-order (i.e., expected utility) approximations would determine the 
global properties of (smooth) non-expected utility preferences. 

The property of increasing or decreasing absolute (or relative) risk aver- 
sion, on the other hand, does not pertain to the sign or strength of an 
individual’s attitude toward risk at a given distribution but rather how t 
attitude changes when evaluated at different distributions (in the above 
example, at different initial wealth distributions 6-J I )). These properties of 
preferences may accordingly be termed “second-order” (or more precisely, 
“second-order in the probabilities”). Since such properties are determined 
by the marmer in which the local expected utility approximation to 
preferences changes when we evaluate it at different probability distri 
tions, their non-expected utility characterizations will generally involve 
additional components which have no analogue in expected utility theory, 
as exemplified by the second term in condition (8) above. This is not to say 
that theoretical results cannot be derived fo -expected utility preferen- 
ces, only that they may well be more co ated than their expected 
utility counterparts. Viewed in another man e have less assurance that 

ted utility results involving second-order properties of preferences 
as increasing or decreasing absolute or relative risk aversion) will be 
t to departures from the hypothesis of linearity in the 

III. EXTENDING COMPARATIVE STATICS RESULTS 
TO NON-EXPECTED UTILITY PREFERENCES 

The implications of the previous section for corn arative statics analysis 
should be clear. Since the canonical comparative statics result in economics 
involves second-order properties of an agent’s maximand, there is reason 

4 Using scalars for simplicity, the general maximization problem in exonomics can be 
described as maximizing an objective function ((2, GL) by choosing a control variable a out of 
some opportunity set A, subject to a parameter Z. If e is concave in CI to ensure a maximum, 
then the derivative of the optimal value a(z) with respect to z is given by the expression 
-<&, a(~))/~,&, a(z)), which involves second-order derivatives of t(‘_ .). 

642;47/2-11 
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to be concerned that these important types of results cannot be directly 
extended from expected utility to non-expected utility preferences. We have 
already seen that the comparative statics of wealth changes on risk 
attitudes does not directly generalize. 

The purpose of this paper is to show that while not all of expected 
utility’s comparative statics results will directly generalize, an important 
class of them will. This family of results was first considered by Rothshild 
and Stiglitz [31, p. 671, who examined the effect of an increase in the riski- 
ness of some underlying economic variable upon the optimal value of a 
(scalar) control variable. It was subsequently extended by Diamond and 
Stiglitz [6] to the effect of compensated increases in risk upon control 
variables and can be further extended to include first- and third-order 
stochastically dominating shifts. Thus, whenever a comparative statics 
result can be expressed in this general framework, it can be directly 
generalized from the expected utility to the non-expected utility case. 

This family of expected utility results all involve a maximization problem 
of the form 

where a is a control variable and X is an economically relevant random 
variable with cumulative distribution function F( .).’ Given the second- 
order condition 

%x,(x, a) < 0 for all x and CL, (10) 

the unique optimal value of the control variable a given F( . ), i.e., E(F), 
is determined by the solution to the first-order condition 

[” u,(x, a(F)) dF(x) = 0. (11) 

Since u,,(x, a) is everywhere negative, any change in the distribution 
F( .) which raises (lowers) the left-hand integral will require a rise (drop) 
in a(F) to reestablish the equality in (11). Say, for example, that u,(x, IX) 
is increasing in x (i.e., u,,(x, a) > 0). In this case any first-order stochasti- 
tally dominating shift in the distribution F( . ) will raise the integral in (1 1 ), 
and hence raise a(P). If u,(x, a) is decreasing in x (if uaX(x, a) < 0), any 
first-order stochastically dominating shift in P( .) will lower a(F). If u,(x, a) 
is a strictly concave (convex) function of x (if u,,,(x, a) < (> ) 0), then any 

‘Since they consider maximands of the form s u(z(x, a)) dF(x), the comparative statics 
analyses of Ekern [9], Feder [ll], Katz [16], Kraus [17], and Meyer and Ormiston [23] 
can also be fitted into this framework. 



COMPARATIVE STATICS 399 

mean preserving increase in risk will lower (raise) the integral and hence 
lower (raise) LX(F).~ 

The result of Diamond and Stightz [6, Theorem 21 concerns a 
parametrized family of distributions (F(., Y)>, where increases in Y induce 
what they term “mean utility preserving increases in risk.” y this they 
mean that an infinitesimal increase in Y from Y,, preserves the expectation 
j” 4x, dF(.; ro))M ? 1 x’ r and leads to an infinitesimal mean preserving 
increase in risk in the distribution of the random variable ~(2, a(F( 1; P.~))) 
when 2 has the distribution I;( .; r). By the envelope theorem it follows that 
d[S u(x, cr(F(.; r))) dF( .; r)]/dr = 0 f or all r, so that global increases in r 
will also preserve expected utility when the individual is allowed to 
remaximize with respect to a. Diamond and Stiglitz [6] demonstrated that 
if increases in OL cause U(X, 01) to become a more (less) risk averse function 
of X, i.e., if 

4 -u,,(x, ~kb, ~)lP > (< 10 (12) 

then any mean utility preserving increase in risk will 1 d to a drop (rise) 
in CZ(P( .; Y)). As these authors (p. 344) have phras it, “the optimal 
response to a mean utility preserving increase in risk is to adjust the 
control variable so as to make u show less risk aversion.” 

The non-expected utility version of the maximization problem (9) is 

max V(F, d), (13) a 

where V( ., .) is assumed to be twice continuously Frtchet differentiable 
(i.e., both its local utility function U( .; F, LX) and V,(F, a) = BV(F, ol)/dcr are 
continuously differentiable in (F, a)).’ The second-order condition for this 
maximization problem is that 

for all E(. ) and a 

and the optimal value of the control variable is the value LX(F) which solves 

V,(F, !%(F)) = 0. (15) 

Our analogues of the expected utility conditions on the signs of the 
derivatives u,Jx, a) and u,,,(x, a) will be the corresponding conditions on 
the signs of the derivatives U,,(x; F, a) and U&x; E;, a). The natural 

6Technically, a function need not possess an everywhere positive derivative to be strictly 
increasing (consider x3 at 0) nor an everywhere negative second derivative to be strictly con- 
cave (consider -x4 at 0). In our theorem these strict properties and inequalities are replaced 
by their weak counterparts, for which there is equivalence. 

7 Since it considers maximands of the form V(G(-; a; F)), the non-expected utility com- 
parative statics analysis of Neilson [27] can, with appropriate modification for the formal 
notion of smoothness, also be litted into this framework. 
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analogue of the Diamond-Stiglitz notion of a mean utility preserving 
increase in risk, which we shall term a “compensated increase in risk,” 
involves a family of distributions {F( ., Y)} such that for each Ye, an 
infinitesimal increase in r from yO preserves the value of V(F( ., Y), 
a(F(.; Ye))) (or equivalently, preserves the expectation of the local utility 
function U( .; F( .; rO), a(F( .; r,,)))) and causes an infinitesimal mean pre- 
serving increase in risk in the distribution of U(Z; F( .; r,,), a(F( .; rO))) 
when 2 has the distribution F( .; r).8 By the envelope theorem, it again 
follows that global changes in r will preserve the value of the remaximized 
preference functional V(F( .; r), a(F( .; r))). Given this, our comparative 
statics result for non-expected utility preferences is: 

THEOREM. Let V( ., .) be a twice continuously Frkchet differentiable 
preference functional over 9[a, b] x A with local utility function l-J( a; F, a) 
and satisfying V,,(F, 01)<0 for all F( .) and CI, and let a(F)= 
argmax(V(F,cr)laEA). Then: 

(i) Zf U,,(x; F, a) 2 (< ) 0 for all x, F( .) and a, then cr(F*) 3 (G) 
a(F) whenever F*( .) first-order stochastically dominates F( .); 

(ii) if U,,(x; F, M) 2 (<) 0 for all x, F( .) and tl, then 
cr(F*) > (<) a(F) whenever F*( .) differs from F( .) by a mean preserving 
increase in risk; 

(iii) if U,,,(x; F, a) 20 for all x, F( .) and ~1, then a(F*) 3 a(F) 
whenever F*( .) differs from F( .) by a third-order stochastically dominating 
shift; and 

(iv) ifd[ - U,,(x; F, cr)/U,(x; F, a)]/da > (6 ) 0 for all x, F( .) and CI, 
then a(F( .; r*)) < ( > ) cr(F( .; r)) w h enever r* > r and increases in r repre- 
sent compensated increases in risk with respect to the preference function 
V( .) g.9 

Proof in Appendix. lo 

Examples of problems which fit into the maximization framework (13) 
and to which this theorem may accordingly be applied, include”: 

s From Machina [19, p. 3151, it follows that when the preference functional V(F) does 
not depend upon any control variable, this detinition includes the concept of a simple 
compensated spread [19, p. 2811 as a special case. 

9 Since it treats the effect of a change in a probability distribution upon the individual’s 
endogenous level of risk aversion, result (iv) is distinct from the non-expected utility 
comparative statics results of Karni [lS, Theorem 21 and Machina 119, Theorem 41, which 
treat the effect of a change in risk aversion upon the choice of a probability distribution. 

” By judicious choice of counterexample, the reader may verify that if the phrase “for all 
x, F( .) and Go’ is replaced by “for all x, F( .) and a = a(F),” then these conditions on the 
derivatives of U(x; F, a) are also necessary for their respective implications on cc(F). 

‘r For additional applications, see Hadar and Russell [ 13, pp. 302-3091. 
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labor supply with an uncertain wage or uncertain non-wage income, 
where c( denotes leisure and E;( .) is the distribution of the wage rate or of 
non-wage income; 

two-period consumption/savings decisions with an uncertain rate of 
return or uncertain second-period income, where a denotes (nonstocbastic) 
first-period consumption and F( .) is the distribution of the rate of retur 
or of second period income; or more generally; 

any situation of “temporal risk” (e.g., Dreze and Modigliani [S], 
Epstein [lo], Kreps and Porteus [18], Machina [21], Mossin [24], 
Rossman and Selden [30], Spence and Zeckhauser [32]), where F(.) is 
the distribution of a delayed-resolution random variable and V(E’, ix) 
represents the individual’s “induced” preferences over (F( . ), LX) pairs after 
maximizing out control variables other than &.I2 

Since comparative statics problems intrinsically involve second-order 
properties of preferences (see Footnote 4), what is it about the genera1 
maximization framework (13) that allows for this direct generalization of 
expected utility results, when other comparative statics results SW 
increasing or decreasing absolute or relative risk aversion do not directly 
generalize? The key difference is what may be termed the “functional 
separation of the probability distribution F( . ) from the control variable ~2’ 
in the objective function V(F, CC) of (13). In the decreasing absolute risk 
aversion case, a change in base wealth x (that is, a change in the distribu- 
tion 6,( .)) does not cause a change in the individual’s preference orderrng 
over the space of probability distributions over final wealth levels, but 
rather a relocation within this space, so that the individuals attitude 
toward purchasing insurance against the risk E” is now governed 
her preference ranking over some different region in the space o 
tions. Tbis effect therefore involves how the local expecte 
approximation to a given preference ranking changes when evaluated at a 
different location in the space of distributions, as represented by the term 
in condition (8) that possesses no expected utility analogue. On the other 

and, since o( and I;(.) enter as separate arguments in V(E CC), changes in 
M (whether exogenous or endogenous) cause a change in the individual’s 
ranking over the entire space of probability distributions rather than a 
relocation within this space. This corresponds to the case of comparative 
risk aversion, which, as noted above, does admit of direct generalizations 
of expected utility results. Put another way, the comparative stati eEect 
of the probabilities d;(. ) upon the control variable a are governed their 
cross-effect on V(F, ~1) or, in otherwords, by t e (fu~ctional~ cross partial. 

*2 These researchers have shown that such derived preferences will typically not be linear in 
the probabilities, even when the agent’s underlying preferences are expected utility. 



402 MARK J. MACHINA 

derivative d2V(F, a)/aF( .)a~? of V(F, CC) with respect to F( .) and t1.13 While 
this cross-effect is second-order in the probabilities and the control 
variable, it is only first-order in the probabilities themselves. It is this func- 
tional separation of the probabilities and the control variable, also present 
in the non-expected utility formulation of Karni [lS, Theorem 21, which 
accordingly allows for the direct extension of expected utility comparative 
statics results to non-expected utility preferences. 

APPENDIX-PROOFS 

We shall make use of the following result: 

LEMMA. If V(F, a) is twice continuously Frtkhet differentiable over 
9[a, b] x A with local utility function U( -; F, a), then the local utility 
function of V,(F, a) is given by U,( .; F, a). 

Prooj: Defining d( .; F, LX) as the local utility function of V,(F, a), we 
have 

4(x; Fo, MO) - j-” d(w Fo’o, ~10) @o(o) 
a 

f$lv,(Ba,+(l-B)F,,a,)llb-o 

-- ~~[~IY(B6,+(1-B)F,,a)ll,_,l/ 
p-=0 

~~[~IV(Ps,+(l-P)Fo,,)ll~=o]~ 
a = ‘10 

e- xi WO’o,a)--jb U(o;Fo,a)dFo(o) 
[ n II m = cq 

7 U,(x; Fo, ao) - j” U,(w Fo, ~0) @o(o). 
a (16) 

Proof of Theorem. (i) If U,,(x; F, CX) > 0 for all x, F( .) and a so that 
U,(x; F, a) is nondecreasing in x, it follows from the above lemma and 
Machina [ 19, Theorem 1] that if F*( .) first-order stochastically dominates 
F( -) then V,(F*, a) 2 V,(F, a) for any c(, so that VJF*, a(F)) 2 
V,(F, a(F)) = 0. Since V,,(F, a) < 0 for all F( .) and a, this implies that the 

I3 In the following lemma we demonstrate that this cross partial derivative, i.e., the local 
utility function of V,(F, E), is given by U,( .; F, a). 
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value a(F*) which solves the first-order condition Y,(F*, ~$8’“)) = 0 must 
be greater than or equal to a(F). A similar argument applies to the case 
when U,,(x; F, N) < 0. 

(ii) If Uaxx(x; F, a) Z 0 for all X, F(.) and 01 so that U,(x; F, LX) is 
convex in x, it follows from the lemma and Machina [B9, Theorem 2] that 
if F*(. ) differs from F( .) by a mean preserving increase in risk, then 
VJF*, a) 3 V,(F, CX) for any a, so that V’,(F*, a(F)) > V,(F, u(F)) = 0. 
Since V,,(F, cz) < 0 for all F( .) and M, this implies that the value a(F*) 
which solves the first-order condition VJF*, a(P)) = 0 must be greater 
than or equal to a(F). A similar argument applies to the case when 
U,,fx; F, OL) d 0. 

(iii) If UorXXX(x; F, CC) >O for all X, F( -) and M, it follows from the 
lemma, Whitmore [33], and an argument analogous to those in 
[19, Theorems 1 and 21 that if F*(. ) differs from F( . ) by a third-order 
stochastically dominating shift, then then V,(F*, a) > V,(F, a) for any a, so 
that V,(F*, E(F)) 2 V,(F, a(F)) = 0. Since Va/,,(F, a) -c 0 for all F( .) and 
this implies that the value ol(F*) which solves the first-order con 
V(F*, cl(F*)) = 0 must be greater than or equal to a(F). 

(iv) From the lemma and Eq. (5) it follows that 

$ CJ’a(F(.; ~1, Wt.; ro)))l Ir=n, 

u,(x; f’(.; rd, W’(.; rd)) dF(x; r) 

for all Ye. Since an increase in Y represents a mean utility preserving 
increase in risk with respect to the function U( .; F( .; ro), a(F(.; ro))) an 
since 

we have from the integration by parts result of Diamond and Stightz 
[6, p. 3443 that the right side of (17) will be nonpositive (nonnegative). 
Since the first-order condition V,(F( .; Y), a(F( .; r))) z 0 implies 

and since the denominator of the right side of (19) is negative, we have that 
da(F( . ; r))/dr will be nonpositive (nonnegative) for all r, which implies that 
ct(F(.; I*)) < (2 ) a(F( .; r)) whenever r* 3 r. 
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