
339 

B. R. Munier (ed.), Risk, Decision and Rationality, 339-344.  
©1988 by D. Reidel Publishing Company. 

Mark J. Machina 
 
 
 

CARDINAL PROPERTIES OF "LOCAL UTILITY FUNCTIONS" 
 
 
 
 
This paper outlines the cardinal properties of "local utili-
ty functions" of the type used by Allen [1985], Chew [1983], 
Chew and MacCrimmon [1979], Dekel [1985], Epstein [1985], 
Fishburn [1984], Karni and Safra [1985], Machina [1982,1983, 
1984], Yaari [1985] and others. 
 
 

1.  SMOOTH PREFERENCES AND LOCAL UTILITY FUNCTIONS 
 
Consider the set D[a,b] of all cumulative distribution func-
tions F(·) over some interval [a,b], and an individual whose 
preference ranking over this set can be represented by a 
real-valued preference functional V(F), in the sense that 
the distribution F*(·) is weakly preferred to F(·) if and 
only if V(F*) ≥ V(F).  Note that V(·) is ordinal in the 
sense that some other functional V*(·) will represent the 
same preference ranking if and only if V*(·) = φ(V(·)) for 
some increasing function φ(·). 
     If the individual is an expected utility maximizer, we 
know that V(·), or some increasing transformation of it, 
will take the linear form V(F) ≡ U(x)dF(x), where U(·) is 
known as the individual's von Neumann-Morgenstern utility 
function.  In such a case we know that the individual will 
rank the distributions F*(·) and Fo(·) according to the sign 
of 
 V(F*) - V(Fo)  =  U(x)·[dF*(x)-dFo(x)] (1) 
 
     Expected utility theory has provided us with many re-
sults linking the von Neumann-Morgenstern utility function 
U(·) with properties of risk preferences.  For example, the 
individual will prefer all first order stochastically domi-
nating shifts if and only if U(x) is increasing in x, and 
will be risk averse, i.e. averse to all mean preserving in-
creases in risk, if and only if U(x) is concave in x. 
     We also know that the von Neumann-Morgenstern utility  
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function U(·) is cardinal in the sense that the linear pre-
ference functional V*(F) ≡ U*(x)dF(x) will represent the 
same preferences as V(·) if and only if U*(·) = β ·U(·) + γ  
for some constants β > 0 and γ. 
     Consider now some V(·) which is not of the linear (i.e. 
expected utility) form.  In such a case there exists no von 
Neumann-Morgenstern utility function U(·).  However, if V(·) 
is at least differentiable (i.e. "smooth"), we know that it 
will be locally linear in the sense that we may take a first 
order Taylor expansion about any distribution Fo(·): 
 
  V(F*) - V(Fo)  =  U(x;Fo)·[dF*(x)-dFo(x)] + o(||F*-Fo||) (2) 
 
where ||·|| is the L1 metric ||F*–Fo|| ≡ |F*(x)-Fo(x)|dx, and 
the term o(·) denotes a function which is zero at zero and 
of higher order than its argument.  Comparing the first or-
der term in this expansion with equation (1), it is clear 
that the individual will evaluate alternative differential 
shifts of probability mass from the distribution F(·) pre-
cisely as would an expected utility maximizer with von Neu-
mann-Morgenstern utility function U(·;Fo).  We refer to the 
function U(·;Fo) as the individual’s local utility function 
at the distribution Fo(·).

2 
     The technique of "generalized expected utility analy-
sis" (e.g. Machina [1982,1983]) essentially consists of ex-
ploiting the linear approximation (2) to generalize the fun-
damental tools, concepts and results of expected utility an-
alysis to the case of nonlinear but smooth preferences over 
probability distributions.  Thus, equation (2) implies that 
V(·) will prefer all differential first order stochastically 
dominating shifts from Fo(·) if and only if the local utili-
ty function U(·;Fo) is increasing, and V(·) will be averse 
to all differential mean preserving increases in risk about 
Fo(·) if and only if U(·;Fo) is concave.  To extend these re-
sults to non-differential changes, consider any path {F(·;α) 
|α  ∈ [0,1]} from the distribution Fo(·) = F(·;0) to the dis-
tribution F*(·) = F(·;1) which is "smooth" enough so that 
the derivative d[||F(·;α)-F(·;α–)||]/dα exists at α  =  α– for all 
α–  ∈ [0,1], as for example with the "straight line" path 
F(·;α) ≡ α ·F*(·) + (1–α)·Fo(·).  By (2) we therefore have 

 [ ]
α α

α
α αα α

⋅
= ⋅∫

dV(F( ; )) d
U(x;F( ; ))dF(x; )d d

 (3) 

and the Fundamental Theorem of Integral Calculus yields 
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1

o
0

d
V(F*) - V(F ) U(x;F( ; ))dF(x; ) dd

 (4) 

which shows how the individual's ranking of these two dis-
tributions depends upon the local utility functions along 
the path between them.  In Machina [1982] such path inte-
grals were used to demonstrate that V(·) will exhibit global 
first order stochastic dominance preference and global risk 
aversion if and only if its local utility functions U(x;F) 
are respectively nondecreasing and concave at each distri-
bution F(·)∈ D[a,b]. 
     For a more formal and complete development of these 
concepts as well as applications of this approach, the read-
er is referred to Machina [1982,1983] as well as the refer-
ences cited below.  We turn now to the cardinal properties 
of local utility functions. 
 
 

2.  ADDITIVE INVARIANCE 
Equations (2) and (4) show how the set of local utility 
functions {U(·;F)|F(·)∈ D[a,b]} derived from a preference 
functional can be used to determine its ranking of both dif-
ferential and global shifts from any distribution Fo(·).  
Our first result is that any other set of functions {U*(·;F) 
|F(·)∈ D[a,b]} satisfying U*(x;F) ≡ U(x;F) +  γ(F) will also 
generate the same differential and global rankings via these 
equations.  In other words, we can add a different constant 
γ(F) to each local utility function U(·;F) without changing 
the original ranking. 
     To see that they generate the same rankings over dif-
ferential shifts, recall that the individual will prefer 
(not prefer) such a shift from Fo(·) if and only if the 
first order term in (2) is positive (negative).  However, 
since the term [dF*(x)–dFo(x)] integrates to zero, we have 
that 

 

[ ]

[ ] [ ]

[ ] ,

γ

⋅

= ⋅

= ⋅

∫
∫

∫

o o

o o o

o o

U*(x;F ) dF*(x)- dF (x)

U(x;F )+ (F ) dF*(x)- dF (x)

U(x;F ) dF*(x)- dF (x)

 (5) 

so that the first order terms generated by the local utility 
functions U*(·;Fo) and U(·;Fo) will be identical for all 
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differential shifts about all Fo(·)∈ D[a,b]. 
     To extend this equivalence to global rankings, note 
that 

 [ ]

[ ]

[ ]

[ ]

α αα α

α γ α αα α

α αα α

⋅

= ⋅ ⋅ ⋅

= ⋅

∫

∫

∫

d
U*(x;F( ; ))dF(x; )d

d
U(x;F( ; ))+ (F( ; )) dF(x; )d

d
U(x;F( ; ))dF(x; )d

 (6) 

so that the right side of equation (4) will be identical for 
any path {F(·;α)|α  ∈ [0,1]}. 
 
 

3.  MULTIPLICATIVE INVARIANCE 
 
Given the set {U(·;F)|F(·)∈ D[a,b]} of local utility func-
ions generated from a preference functional V(·), our sec-
ond result is that any other set of functions {U*(·;F)|F(·) 
∈ D[a,b]} obtained by means of the transformation U*(x;F) ≡ 
β(V(F))·U(x;F) will also generate the same ranking, for any 
positive continuous function β(·).  Note that this implies 
we can multiply different local utility functions by differ-
ent positive constants, provided that the local utility 
functions corresponding to indifferent distributions are 
multiplied by the same constant. 
     To see this, define the function V(·) and functional 
V*(·) by 

 
υ

φ υ β φ≡ ⋅ ≡
−∞∫( ) (s)ds and V*(F) (V(F)) (7) 

By the chain rule, we have that the local utility function 
of V*(·) is given by φ (V(F))·U(·;F) = β(V(F))·U(·;F) = 
U*(·,F), which establishes that the family of local utility 
functions {U*(·;F)|F(·)∈ D[a,b]} from the previous para-
graph comes from an increasing transformation φ(V(F)) of the 
original preference function V(·), and hence represents the 
same global preference ranking. 
 
     Finally, we note that while the local utility functions 
used in some of the following references are derived from 
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notions of differentiability which make weaker assumptions 
on the higher order term (1), these local utility functions 
can also be shown to exhibit the cardinal properties 
discussed above. 
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NOTES 

1. I am grateful to Chew Soo Hong and Joel Sobel for helpful 
comments. 

2. Applying the integration by parts formula from Machina 
[1982,Lemma 2] (see also Feller [1971,p.150]) yields that 
the first order term in the Taylor expansion is equal to  
- [F*(x)–F(x)]·U(x;F)·dx, which is seen to be precisely 
the classical variational derivative of the functional 
V(·) with respect to the function F(·). 

 

REFERENCES 

Allen, B., [1985] ‘Smooth Preferences and the Approximate 
Expected Utility Hypothesis,’ forthcoming in Journal of 
Economic Theory. 

Chew, S., [1983] ‘A Generalization of the Quasilinear Mean 
with Applications to the Measurement of Income Inequality 
and Decision Theory Resolving the Allais Paradox,’ 
Econometrica 52, 1065-92. 

Chew, S. and K. MacCrimmon, [1979] ‘Alpha-Nu Choice Theory: 
A Generalization of Expected Utility Theory,’ manuscript, 
Faculty of Commerce, University of British Columbia. 

Dekel, E., [1985] ‘An Axiomatic Characterization of Prefer-
ences Under Uncertainty: Weakening the Independence Axi-
om,’ forthcoming in Journal of Economic Theory. 

Epstein, L., [1985] ‘Decreasing Risk Aversion and Mean-Var-
iance Analysis,’ Econometrica 53, 945-61. 

Feller, W., [1971] An Introduction to Probability Theory and 
its Applications, Vol. II. (New York: John Wiley and 
Sons.) 



344 M. J. MACHINA 

Fishburn, P., [1984] ‘SSB Utility Theory: An Economic Per-
spective,’ Mathematical Social Sciences 8, 63-94. 

Karni, E. and Z. Safra, [1985] ‘"Preference Reversal" and 
the Observability of Preferences by Experimental Meth-
ods,’ forthcoming in Econometrica. 

Machina, M., [1982] ‘"Expected Utility" Analysis Without the 
Independence Axiom,’ Econometrica 50, 277-323. 

Machina, M., [1983] ‘Generalized Expected Utility Analysis 
and the Nature of Observed Violations of the Independence 
Axiom,’ in B. Stigum and F. Wenstøp (Eds.) Foundations of 
Utility and Risk Theory with Applications (Dordrecht, 
Holland: D. Reidel). 

Machina, M., [1984] ‘Temporal Risk and the Nature of Induced 
Preferences,’ Journal of Economic Theory 33, 199-231. 

Yaari, M., [1985] ‘The Dual Theory of Choice Under Risk,’ 
manuscript, Department of Economics, Hebrew University of 
Jerusalem. 

 
 
 


