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Summary. Every subjective state space with Euclidean structure contains almost-
objective events which arbitrarily closely approximate the properties of objectively
uncertain events for all individualswith event-smooth betting preferences –whether
or not they are expected utility, state-independent, or probabilistically sophisti-
cated. These properties include unanimously agreed-upon revealed likelihoods,
statistical independence from other subjective events, probabilistic sophistication
over almost-objective bets, and linearity of state-independent and state-dependent
expected utility in almost-objective likelihoods and mixtures. Most physical ran-
domization devices are based on events of this form. Even in the presence of state-
dependence, ambiguity, and ambiguity aversion, an individual’s betting preferences
over almost-objective events are based solely on their attitudes toward objective risk,
and can fully predict (or be predicted from) their behavior in an idealized casino.
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1 Introduction

The theory of individual choice under uncertainty allows for a wide variation in the
specification of uncertain outcomes, which can consist of univariate wealth levels,
multivariate commodity bundles, continuous-time consumption streams, or most
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generally, abstract objects x ∈ X . The theory also admits two different ways of
representing uncertainty itself, namely:

• Objective uncertainty,which is represented bywell-defined, additive, numerical
probabilities p∈ [0, 1], and where the objects of choice consist of lotteries P
= (x1, p1; . . . ;xn, pn) which yield outcome xi∈X with probability pi, under
the standard condition

∑n
i=1 pi = 1.1

• Subjective uncertainty, which is represented by mutually exclusive and exhaus-
tive states of nature s∈S, andwhere the objects of choice consist of bets or acts
f(·) = [x1 on E1; . . . ;xn on En] which yield outcome xi∈X if the realized
state lies in event Ei ⊆ S, for some partition {E1, . . . , En} of S.
One strength of the objective framework is that it allows us to draw on the

tremendous body of results in probability theory, such as the Central Limit The-
orem, Law of Large Numbers or Chebyshev’s Inequality. Furthermore, since ob-
jective probabilities are part of the objects of choice themselves, such results hold
independently of the individual’s particular attitudes toward risk, and in this sense
they have the same character as arbitrage-based arguments in finance, which also
hold independently of risk preferences and hence yield extremely powerful results.

But in some sense, this strength of the objective framework is also its greatest
weakness: it imposes too much conformity of beliefs across individuals, and in
many cases, too much structure on each individual’s own beliefs. In most real-
world uncertain prospects, such as real investments, financial assets, or insurance
contracts, uncertainty does not appear in the form of unanimously agreed-upon
numerical probabilities, but rather, in terms of states or events. In contrast with
objective lotteries, preferences over such real-world subjective prospects exhibit
the following properties:

• Individuals may have different subjective likelihoods for the relevant events
(diverse beliefs).

• Individuals’ beliefs may not be representable by probabilities at all, with some
or all events being considered “ambiguous” (absence of probabilistic sophisti-
cation).

• Outcome preferences may depend upon the source of uncertainty itself (state-
dependence).

All of this argues for modeling uncertainty via the subjective approach, which is
rightly considered the more “foundational” of the two approaches.

In order to obtain as many of the benefits of probability theory as possible
within the subjective framework, several researchers have proposed conditions on
preferences over subjective acts which imply that an individual’s beliefs can be
represented by subjective probabilities (sometimes called personal probabilities)
over events. Examples include:

• Anscombe and Aumann (1963), who combine a subjective state space S =
{s1, . . . , sn} (a horse race) with an exogenous objective randomization device
(a roulette wheel), assume expected utility maximization, and then derive von

1 Throughout this paper, we restrict attention to finite-outcome uncertain prospects.
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Neumann-Morgenstern outcome utilities {U(x) |x ∈ X} and subjective state
probabilities {µ(s1), . . . , µ(sn)}. While elegant, this two-stage2 approach still
ultimately relies upon exogenous objective uncertainty, via the roulette wheel.

• Ramsey (1931), who considers a family of subjective events which includes an
ethically neutral event Ē for which the individual’s betting preferences satisfy
[x∗ on Ē;x on∼Ē]∼ [x on Ē;x∗ on∼Ē] for all outcomes x∗ and x, assumes
expected utility maximization, and then derives the utility of each outcome and
subjective probability of each event. This approach is thus completely subjec-
tive, relying just on the existence of some subjective event Ē whose betting
properties essentially correspond to those of an exogenous objective event with
probability 1

2 .• Savage (1954), who takes a general (infinite) state space S, assumes that pref-
erences over finite-outcome acts satisfy the Sure-Thing Principle (separability
across mutually exclusive events), consistent comparative likelihoods ([x∗ on
A;x on ∼A] � [x∗ on B;x on ∼B] for x∗ � x implies [y∗ on A; y on ∼A] �
[y∗ onB; y on∼B] for all y∗ � y), and a version of event-continuity, and then
derives expected utility risk preferences and a subjective probability measure
µ(·) over S.

• Machina and Schmeidler (1992), who adopt a Savage type setting, and de-
rive the probabilistically sophisticated form V (x1, µ(E1); . . . ;xn, µ(En)) for
some subjective probability measure µ(·) and general (i.e., not necessarily ex-
pected utility) risk preference function V (x1, p1; . . . ;xn, pn). Machina and
Schmeidler (1995) give a similar derivation in an Anscombe-Aumann setting.

Such formulations succeed in bringing additive numerical probabilities into the
subjective framework. However, the subjective probabilities they generate do not
exhibit all of the properties of exogenous objective probabilities. Since subjective
probabilities needn’t exist for individuals who violate the assumptions of these
formulations, they do not exhibit the objective-probability property of universal
existence across agents. Since they needn’t be the same for all individuals even
when they do exist, they do not exhibit the objective property of unanimity across
agents.

But perhaps surprisingly, some subjective events turn out to be more “objec-
tive” than others. An early example of this was offered by Poincaré (1912), who
considered a Euclidean state space S = [s, s̄] ⊂ R1 and constructed a sequence of
events {Ēm}∞

m=1 such that every subjective probability measure µ(·) over S with
a bounded-derivative density ν(·) exhibits limm→∞ µ(Ēm) = 1

2 . Thus as m→∞
the events Ēm converge to the likelihood properties of an objective 50:50 coin, for
every individual with a bounded-density subjective probability measure.

The purpose of this paper is to extend the definition of such events, enlarge the
set of objective properties that they arbitrarily closely approximate, and expand the
universe of agents for whom these properties hold. Specifically, we show that:

• Euclidean structural assumptions on a purely subjective state space S, and
the property that subjective act preferences are “smooth in the events,” imply

2 Sarin and Wakker (1997) offer a single-stage version of the Anscombe-Aumann results, which
retains their assumptions of joint objective×subjective uncertainty and expected utility risk preferences.
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the existence of what we term almost-objective events in S. Such events will
approximate – and in the limit attain – all the properties of idealized objective
events for every individual with event-smooth act preferences, whether or not
they possess a subjective probability measure µ(·).

• These limiting properties include unanimously agreed-upon revealed likeli-
hoods that are independent of the occurrence/non-occurrence of other subjec-
tive events, state-independent and probabilistically sophisticated betting pref-
erences over such events (even for individuals who are not state-independent
or probabilistically sophisticated in general), and linearity in these likelihoods
for all state-independent and state-dependent expected utility maximizers.

• Even in the presence of state-dependence, ambiguity and ambiguity aversion,
an individual’s preferences over almost-objective acts will be based solely on
their attitudes toward objective risk, and can thus fully predict – or be predicted
from – their behavior in an idealized casino.

Since they converge to the properties of objective events for all event-smooth
individuals, almost-objective events and the acts and mixtures based on them can
also serve as completely subjective substitutes for many of the standard analytical
uses of objective uncertainty. For example:

• Almost-objective events can replace an exogenously specified objective roulette
wheel to allow for a direct Anscombe-Aumann style derivation of exact sub-
jective probability within a completely subjective framework.

• Almost-objective mixtures of subjective acts can also replace objective proba-
bility mixtures to allow for an extension of the analysis of Machina (1982) to
subjective uncertainty, yielding a joint generalization of expected utility analy-
sis and subjective probability analysis to all event-smooth individuals, whether
or not they satisfy the expected utility hypothesis or the hypothesis of proba-
bilistic sophistication.

The following section gives the analytical setting and offers an example
(“almost-ethically-neutral events”) which illustrates the general idea of the ap-
proach. Section 3 presents the notions of an almost-objective event, an almost-
objective act, and an almost-objective mixture of subjective acts, and examines
the revealed likelihood and betting properties of these objects. Section 4 presents
the above-mentioned applications, and a discussion of why some sources of gains
from trade under uncertainty lead to bets on almost-objective events, whereas oth-
ers lead to bets on general subjective events. Section 5 offers comparisons with the
literature and analytical extensions, and Section 6 discusses some implications for
the modeling of uncertainty and uncertain choice. Mathematical background and
proofs of theorems are in an Appendix.

2 Setting and illustration

2.1 Setting

Although Section 5.2 shows how it can be developed more generally, the formal
analysis of this paper is conducted within the following framework:
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X = {... , x, ...} arbitrary space of outcomes

S = [s, s̄ ] ⊂ R1 set of states of nature, with uniform Lebesgue
measure λ(·)

E = {... , E, ...} algebra of events (each a finite union of inter-
vals) in S

f(·) = [x1 on E1; ... ;xn on En]
finite-outcome act, yielding outcome xi in
event Ei, for some E-measurable partition
{E1, ... , En} of S

A = {... , f(·), ...} set of all finite-outcome, E-measurable acts
on S

W (·) and � preference function and its corresponding
preference relation over A

An event E is said to be null for preference function W (·) if W (x∗ on E; f(·)
on ∼E) = W (x on E; f(·) on ∼E) for all x∗, x and f(·), and our event-continuity
assumption (defined in theAppendix) implies that every eventEwith zeroLebesgue
measure will be null. We assume that preferences are outcome-monotonic in the
sense that if two outcomes satisfy x∗ � x (i.e., ifW (x∗ on S)>W (x on S)), then
W (x∗ on E; f(·) on ∼E) > W (x on E; f(·) on ∼E) for all f(·) and all nonnull
E.

It is important to note that the above framework is one of completely subjective
uncertainty. In particular, almost-objective events will all be subsets ofS (in fact, el-
ements of E), and almost-objective acts and almost-objectivemixtures of subjective
acts will be mappings from S to X (elements of A). No “objective randomization
device” will be appended to this structure.

A preference function W (·) over subjective acts f(·) = [x1 on E1; . . . ;xn on
En] may or may not be expected utility, it may or may not be state-dependent, and
it may or may not be probabilistically sophisticated. That is, it may or may not take
one of the following forms:

WSEU (f(·)) =
∫

S U(f(s))·dµ(s)
=
∑n

i=1U(xi)·µ(Ei)

state-independent expected utility, for
some utility function U(·) and subjec-
tive probability measure µ(·)

WSDEU (f(·)) =
∫

S U(f(s)|s)·dµ(s)
=
∑n

i=1

∫
Ei

U(xi|s)·dµ(s)

state-dependent expected utility, for
some utility functionU(·|·) and subjec-
tive probability measure µ(·)

WPS(f(·)) =
V (x1, µ(E1); ... ;xn, µ(En))

probabilistically sophisticated, for
some preference function V (·) and
subjective probability measure µ(·)

As mentioned, we also assume that each preference function W (·) is “smooth
in the events.” Event-differentiability is a generalization of the standard mathemat-
ical idea of differentiability of a set function, and versions of this idea have been
developed and applied by Epstein (1999) in his characterization of uncertainty
aversion, and by Machina (2002) in an analysis of the robustness of the classical
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model of risk preferences and beliefs.3 Intuitively, event-differentiability is simply
the property that W (f(·)) = W (x1 on E1; . . . ;xn on En) responds smoothly to
differential changes in the events E1, . . . , En, as opposed to differential changes
in the outcomes x1, . . . , xn. Thus, for the two-parameter family of subjective acts
fα,β(·) = [x1 on [s, α);x2 on [α, β);x3 on [β, s̄]] over S = [s, s̄], W (fα,β(·))
would vary smoothly in the values α and β. The above three forms will be event-
smooth provided they satisfy the following conditions:

WSEU (·) : its subjective probability measure µ(·) has a continuous density
ν(·) over S

WSDEU (·) : for each x, its evaluation measure Φx(E) ≡ ∫
E
U(x|s)·dµ(s)

has a continuous density

WPS(·) : µ(·) has a continuous density ν(·), and V (·) is differentiable in
the probabilities

Formal definitions of event-differentiability and event-smoothness, based on
Machina (2002), are given in the Appendix. Although required for the proofs of
the theorems, this mathematical material is not invoked in either the intuitive or the
formal discussion of the text.

2.2 Six properties of purely objective events

Purely objective events – as generated by an idealized coin, die or roulette wheel –
exhibit the following characteristic properties, either in isolation or in the presence
of subjective uncertainty:

1. Unanimous, outcome-invariant revealed likelihoods: All individuals exhibit
identical, outcome-invariant revealed likelihoods over purely objective events
– corresponding, of course, to their objective probabilities. In contrast, bet-
ting preferences over any pair of subjective events can differ across individuals
(when they have different subjective beliefs), can depend upon the prizes as-
signed to the events (under state-dependence), or can even depend upon the
prizes assigned to mutually exclusive events (as in the Ellsberg (1961) Para-
dox).

2. Independence from subjective events: Under joint objective×subjective uncer-
tainty, purely objective event likelihoods are independent of the realization/non-
realization of any given subjective event, whether or not that event happens to
be assigned a subjective probability. That is, the event likelihoods for an exoge-
nous objective coin, die or roulette wheel are invariant to whether any given
subjective event E does or does not occur.

3. Probabilistic sophistication over objective lotteries: It is almost a truism that
all individuals evaluate objective lotteries P = (x1, p1; . . . ;xn, pn) solely ac-
cording to their outcomes and corresponding objective likelihoods, via some
preference function of the form V (x1, p1; . . . ;xn, pn).

3 See also Rosenmuller (1972), as well as Epstein and Marinacci’s (2001) application to the core of
large games.
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4. Reduction of objective×subjective uncertainty: Standard reduction of com-
pound uncertainty assumptions4 imply that all individuals – whether or not they
are expected utility, state-independent or probabilistically sophisticated – eval-
uate any objective mixture (f(·), α; f∗(·), 1− α) of subjective acts f(·) = [x1
onE1; . . . ;xn onEn] and f∗(·) = [x∗

1 on E∗
1 ; . . . ; x∗

n∗ on E∗
n∗ ] solely accord-

ing to its induced map [. . . ; (xi, α;x∗
j ,1−α) on Ei∩E∗

j ; . . .] from events to
lotteries, so that any other mixture (f0(·), α0; f∗

0 (·), 1−α0) which induces the
same map will be indifferent.5

Besides the above properties, which apply to all individuals, exogenous objectively
uncertain events exhibit two more specialized properties: one for all probabilis-
tically sophisticated individuals, and the other for all state-independent or state-
dependent expected utility maximizers:

5. Under probabilistic sophistication, two-way independence of objective and sub-
jective likelihoods: Whenever subjective event likelihoods are all well-defined
– that is, whenever the individual is probabilistically sophisticated – these sub-
jective event likelihoods are independent of the realization/non-realization of
exogenous objective events, and vice versa.

6. Under expected utility, linearity in objective likelihoods: Under objec-
tive uncertainty, expected utility is linear in objective probabilities (i.e.,
VEU (x1, p1; . . . ;xn, pn) ≡ ∑n

i=1 U(xi) · pi) and in objective mixtures
of lotteries (VEU (P, α;P∗, 1−α) ≡ α · VEU (P) + (1 − α) · VEU (P∗)).
Under objective×subjective uncertainty, both state-independent and state-
dependent expected utility are linear in objective mixtures of subjective acts
(WSEU (f(·), α; f∗(·), 1−α) = α·WSEU (f(·)) + (1−α)·WSEU (f∗(·)), and
WSDEU (f(·), α; f∗(·), 1−α) = α·WSDEU (f(·))+ (1−α)·WSDEU (f∗(·))).

As shown in Theorems 1–6 below, even though almost-objective events, acts and
mixtures are completely subjective, they will approximate – and in the limit attain
– each of these properties.

2.3 Almost-ethically-neutral events

Of course, there exists no subjective event Ē ⊆ S that is viewed as being “objec-
tively ethically neutral” by all individuals with event-smooth preferences – that is,
no Ē that satisfies

W
(
x∗ on Ē;x on∼Ē

) ≡
all x,x∗∈X

W
(
x on Ē;x∗ on ∼Ē

)
(1)

for every event-smooth W (·) overA. This is neither unexpected nor inappropriate
– as noted above, one of the primary motivations for the subjective approach is
precisely to allow for such diversity (or even nonexistence) of likelihood beliefs.

4 E.g., Anscombe and Aumann (1963), Machina and Schmeidler (1995).
5 For example, since the mixtures ([x1 on E1; x2 on E2], 12 ; [x0 on S], 12 ) and ([x0 on E1; x2 on

E2], 12 ; [x1 on E1; x0 on E2], 12 ) induce the same map [(x1, 12 ; x0, 12 ) on E1; (x2, 12 ; x0, 12 ) on E2]
from events to lotteries, they will be indifferent.
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E

S

ν(⋅)

Figure 1 Almost-ethically-neutral events Ēm satisfyµ(Ēm) ≈ 1
2 , as well asµ(Ēm ∩E) ≈ 1

2 ·µ(E),
for every measure µ(·) with a continuous density function ν(·)

Nevertheless, some subjective events come “closer” to being objectively ethi-
cally neutral than others. For each m ≥ 1, partition the state space S = [s, s̄] into
the m equal-length intervals[

s, s + λS
m

)
, . . . ,

[
s + i·λS

m , s + (i+1)·λS
m

)
, . . . ,

[
s + (m−1)·λS

m , s̄
]

(2)

where λS = λ(S) = s̄− s, and define the event Ēm ⊂ S by

Ēm =
⋃m−1

i=0

[
s + i·λS

m , s + (i+ 1
2 )·λS

m

]
(3)

that is, as the union of the left halves of the intervals in (2). For uniform Lebesgue
measure λ(·) on S, it is clear that Ēm exactly satisfies λ(Ēm) = 1

2 ·λ(S) for each
m.

Consider the subjective probabilities of such events.6 Given an arbitrary conti-
nuous-density subjective probability measure µ(·), say from a preference function
WSEU (·),WSDEU (·) orWPS(·), the events Ēm generally do not satisfy µ(Ēm) =
1
2 . However, asm →∞ the events Ēm and their complements∼Ēmwill arbitrarily
closely approximate this property – that is, they will satisfy

lim
m→∞µ

(
Ēm

)
= lim

m→∞µ
(∼Ēm

)
= 1

2 (4)

This result can be illustrated in Figure 1, where the event Ēm appears as the union
of the solid intervals along the entire horizontal line (the state space S). For any
subjective probability measure µ(·) with a continuous density function ν(·), the
probabilityµ(Ēm) consists of the total shaded area lying below the density function,
which for largem is seen to approachhalf of the total area below thedensity function
– or in other words, to approach the value 1

2 .
As mentioned, examples like (3) date back at least to Poincaré (1912, Sects. 92–

93), who thought of the state space S = [s,s̄] and events Ēm,∼Ēm as a spinning
wheel divided into a large number of equal-sized alternating red and black sectors
of angular width ε. Denoting the total number of angular rotations of the wheel by
ω, Poincaré gave the following result linking ω’s subjective density ν(·) with the
probability that the spin results in red (or black):

6 All properties of the events Ēm and ∼Ēm reported below follow from the theorems in Section 3.
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Theorem (Poincaré, 1912). For any differentiable density function ν(·) with sup-
port lying in an interval [s, s̄], and such that |ν′(·)| < νmax over [s, s̄] :∣∣2 · prob(red) − 1

∣∣ < νmax · (s̄− s) ·ε (5)

Other authors have provided similar results, such as:

• Feller (1971, pp. 62–63), who considers the case when ν(·) is unimodal and
small at its mode

• Kemperman (1975),who considers the case ofk’th order differentiable densities
• Good (1986, pp. 162–164), who considers the case when ν(·) is a mixture of
distributions

• Diaconis and Engel (1986), who consider a two-dimensional state space

Similar results and/or discussions appear in Fréchet (1952, pp. 3–8,16), Diaconis
and Keller (1989) and the posthumously published lecture of Savage (1973), which
contains a version of Figure 1.

Results such as equation (4), Poincaré’s Theorem, and the above extensions
show that as m → ∞, the events Ēm and ∼Ēm approximate the equal subjective
probability property with respect to any suitably regular (e.g., continuous-density)
subjective probability measure µ(·) on S. However, these results fall short of es-
tablishing that Ēm and∼Ēm approximate the objective ethical neutrality property
(1) for all event-smooth W (·), for two reasons:
• Since they assume the existence of a prior subjective probability measure µ(·)

(or subjective density ν(·)) on S, these results can only be applied to prefer-
ence functions that are based on such measures, such as the forms WSEU (·),
WSDEU (·) or WPS(·), as opposed to a general event-smooth W (·).

• Even for a measure-based form such asWSDEU (·), the equal subjective proba-
bility condition µ(Ē) = µ(∼Ē) need not imply the ethical-neutrality property
W (x∗ on Ē ; x on ∼ Ē) ≡

x,x∗ W (x on Ē ;x∗ on ∼ Ē), for reasons of state-

dependence.

However, by strengthening the above results, it is possible to show that the events
Ēm and ∼Ēm in fact do approximate the property of objective ethical neutrality,
as well as all other properties of objective 50:50 events, for every event-smooth
preference function W (·) overA. Consider first the revealed likelihood properties
of the events Ēm and ∼ Ēm. Since each event-smooth WSDEU (·) will possess
continuous-density evaluation measures Φx(E) ≡ ∫

E
U(x|s) · dµ(s), all event-

smoothWSEU (·),WSDEU (·) andWPS(·)will exhibit the following properties for
all x, x∗ ∈ X :

lim
m→∞WSEU

(
x∗ on Ēm

x on ∼Ēm

)
=

U(x∗)+U(x)
2

= lim
m→∞WSEU

(
x on Ēm

x∗ on ∼Ēm

)
(6)

lim
m→∞WSDEU

(
x∗ on Ēm

x on ∼Ēm

)
=

Φx∗(S)+Φx(S)
2

= lim
m→∞WSDEU

(
x on Ēm

x∗ on ∼Ēm

)



10 M. J. Machina

lim
m→∞WPS

(
x∗ on Ēm

x on ∼Ēm

)
= V (x∗, 1

2 ;x, 1
2 ) = lim

m→∞WPS

(
x on Ēm

x∗ on ∼Ēm

)

so Ēm and ∼Ēm can be said to be almost-ethically-neutral events for these pref-
erence functions. More generally, Ēm and ∼ Ēm will be shown to satisfy the
almost-ethical-neutrality condition

lim
m→∞W

(
x∗ on Ēm

x on ∼Ēm

)
≡

all x,x∗∈X
lim

m→∞W

(
x on Ēm

x∗ on ∼Ēm

)
(7)

for all event-smooth preference functions W (·) on A.
In addition, the almost-ethically-neutral events Ēm and∼Ēm also approximate

the objective property of independence with respect to the realization of any fixed
subjective event E ⊆ S, in the sense that, conditional on E, the joint events
Ēm ∩ E and ∼ Ēm ∩ E will also have unanimous, outcome-independent, equal
limiting revealed likelihoods. That is, these events satisfy

lim
m→∞µ

(
Ēm ∩ E

)
= 1

2 ·µ(E) = lim
m→∞µ

(∼Ēm ∩ E
)

(8)

lim
m→∞Φx

(
Ēm ∩ E

)
= 1

2 ·Φx(E) = lim
m→∞Φx

(∼Ēm∩ E
)

for all continuous-density measures µ(·) or Φx(·), as well as the limiting equal-
revealed-likelihood identities

lim
m→∞W




x∗ on Ēm∩E

x on ∼Ēm∩E

f(·) elsewhere


 ≡

all x,x∗∈X
all f(·)∈A

lim
m→∞W




x on Ēm∩E

x∗ on ∼Ēm∩E

f(·) elsewhere


 (9)

for all event-smooth W (·) on A.
The limiting measure property limm→∞ µ(Ēm∩E) = 1

2 ·µ(E) from (8) is also
illustrated in Figure 1 for an arbitrary interval eventE. For any probability measure
µ(·)with continuous density ν(·), the probability µ(Ēm∩E) consists of the shaded
area lying within the boundaries of the interval E and below the density function,
which for large m is seen to approach half the total area within the boundaries of
E and below the density function, or in other words, to approach 1

2 ·µ(E).
It is worth noting the following properties of almost-ethically-neutral events,

which will turn out to hold for all almost-objective events: First, since Ēm and
∼Ēm are subsets of S, they are completely subjective events. Second, the two key
assumptions needed to generate them and their properties are that the state space S
have aEuclidean structure and that preferences be event-smooth.Third, although the
limiting event “Ē∞” from (3) does not actually exist, event-smoothness will imply
that the limiting preference function values in (6), (7) and (9) always exist. Fourth,
although results such as (6) and (7) imply equality of W (·)’s limiting valuations
of the bets [x∗ on Ēm; x on ∼Ēm] and [x on Ēm; x∗ on ∼Ēm] – as measured,
for example, by their limiting certainty equivalents – they yield no information on
W (·)’s limiting ranking of these two bets, even for arbitrarily large m. (We will,
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however, be able to obtain limiting rankings for such bets, once we consider events
with unequal limiting likelihoods.) Finally, just as with the convergence of linear
approximations or of Taylor series, the rate of convergence in results like (4) –
(9) will generally depend upon the specifics of the measures µ(·) or Φx(·), or the
function W (·).

The special structure of the almost-ethically-neutral events Ēm and∼Ēm might
suggest that they are not very relevant “in practice”. In fact, they constitute a fully
operational and frequently used method of generating “objective” uncertainty. For
example, if the subjective state s ∈ [0◦, 100◦] is the temperature at Times Square
at noon tomorrow, then the events Ē100 and ∼Ē100 correspond to the temperature
being even versus odd, and Ē1,000 and∼Ē1,000 correspond to its first decimal digit
being even versus odd, etc. At this point, virtually all bettors with event-smooth act
preferences – regardless of their differing beliefs, state-dependence or ambiguity
aversion – will be indifferent between betting on Ē1,000 versus ∼Ē1,000. Similar
computer-generated events, based on the k’th decimal of the clock time at which the
return key is pressed, will also generate revealed likelihoodswhich are unanimously
viewed as equal, as well as being independent of any fixed subjective event (such as
tomorrow’s temperature falling in the range [40◦, 50◦]). And as seen in Poincaré’s
example, even the classic “objective” events of {red, black} on a roulette wheel,
or {heads, tails} in a coin flip, are precisely almost-ethically-neutral events, where
the subjective state s is simply the physical force with which the wheel is spun, or
the coin is flipped.

3 Almost-objective events, acts and mixtures
under completely subjective uncertainty

The above ideas can be extended to a general specification of almost-objective
uncertaintywhich is based solely on the subjective state spaceS = [s, s̄], the family
of subjective acts f(·) ∈ A, and the family of event-smooth preference functions
W (·) over A. In the limit, it will exhibit each of the six properties of objective
uncertainty listed in Section 2.2 above.7

3.1 Almost-objective events: Construction and measure properties

Although the almost-ethically-neutral events Ēm from (3) were constructed from
the left halves of the equal-length intervals (2), they could also have been con-
structed from the central halves [s+ (i+ 1

4 )·λS
m , s+ (i+ 3

4 )·λS
m ] of these intervals,

or from any finite interval union ℘ ⊂ [0, 1] with Lebesgue measure λ(℘) = 1
2 .

Similarly, events constructed from any ℘ ⊂ [0, 1] with λ(℘) = 1
3 will approxi-

mate the properties of an objective event with probability 1
3 , etc. For any finite

7 Theorems 1–6 below will be numbered to correspond to these six properties.
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interval union℘ ⊆ [0, 1] and any positive integerm, we define the almost-objective
event ℘×

m
S ⊆ S by

℘×
m
S =

⋃m−1

i=0

{
s + (i + ω)·λS

m

∣∣ω ∈ ℘
}

(10)

that is, as the union of the natural images of℘ into each ofS’s equal-length intervals
from (2).

For each m, the mapping ℘ → ℘×
m
S from subsets of [0, 1] to almost-objective

events in S is seen to satisfy λ(℘×
m
S) = λ(℘) ·λ(S), as well as the following

preservation properties

preservation of relative
Lebesgue measure:

λ(℘×
m
S)/λ(℘′×

m
S) ≡ λ(℘)/λ(℘′)

preservation of disjointness/
non-disjointness:

℘∩℘′ = ∅ ⇔ (℘×
m
S)∩ (℘′×

m
S) = ∅ (11)

preservation of finite unions
and intersections:

(℘∪℘′)×
m
S ≡ (℘×

m
S)∪ (℘′×

m
S)

(℘∩℘′)×
m
S ≡ (℘×

m
S)∩ (℘′×

m
S)

Thus, each partition {℘1, . . . , ℘n} of [0, 1] induces the almost-objective partition
of S defined by

{℘1, . . . , ℘n}×mS =
{
℘1×mS, . . . , ℘n×mS

}
(12)

Given any fixed subjective event E ∈ E , we can similarly define its almost-
objective subevents and almost-objective partitions by

℘×
m
E =

(
℘×

m
S)∩E and {℘1, . . . , ℘n}×m E =

{
℘1×m E, . . . , ℘n×m E

}
(13)

Although the mapping ℘ → ℘×
m
E preserves both disjointness/non-disjointness as

well as finite unions and intersections in the same manner as the mapping ℘ →
℘×

m
S, standard “lumpiness” considerations imply that it will not exactly satisfy

λ(℘×
m
E) = λ(℘)·λ(E), even when both℘ andE are intervals, so it does not exactly

preserve relative Lebesguemeasure. However, almost-objective subevents will turn
out to satisfy the limiting form of this property, namely that λ(℘×

m
E) converges to

λ(℘)·λ(E) asm →∞. More generally, the limiting measure properties of almost-
ethically-neutral events and subevents generalize to almost-objective events and
subevents, as formalized in the following generalization of Poincaré’s Theorem:

Theorem 0 (Limiting measure properties of almost-objective events and sub-
events). For every finite interval union ℘ ⊆ [0, 1] and every event E ∈ E , the
almost-objective events ℘×

m
S and subevents ℘×

m
E = (℘×

m
S) ∩ E satisfy

lim
m→∞K

(
℘×

m
S) = λ(℘)·K(S) and lim

m→∞K
(
℘×

m
E
)

= λ(℘)·K(E) (14)

for every continuous-density signed measure K(·) over S. For any family of signed
measures {K(·; τ) |τ ∈ T} over S with uniformly bounded and uniformly contin-
uous densities, such convergence will be uniform.
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Since almost-objective events ℘×
m
S and subevents ℘×

m
E are subsets of the

original subjective state space S, they can be used to define “almost-objective” acts
within the original subjective act space A, as well as “almost-objective” mixtures
of arbitrary subjective acts, which will also be elements of A. For any partition
{℘1, . . . , ℘n} of [0, 1] (where each ℘i is a finite interval union) and collection of
outcomes x1, . . . , xn ∈ X , we define the almost-objective act[

x1 on ℘1×mS ; . . . ;xn on ℘n×mS
] ∈ A (15)

For any family of subjective acts f1(·), . . . , fn(·) ∈ A, we define the almost-
objective mixture[

f1(·) on ℘1×mS ; . . . ; fn(·) on ℘n×mS
] ∈ A (16)

which is seen to yield outcome x on the event ℘1×m f−1
1 (x) ∪ · · · ∪ ℘n×m f−1

n (x).

3.2 Revealed beliefs over almost-objective events

Property 1: Unanimous, outcome-invariant limiting revealed likelihoods. In the
temperature example, it is reasonable to suppose that most individuals, regardless
of their beliefs, and even if their preferences are temperature-dependent, would be
indifferent between staking a prize on the almost-objective events [.5, .6)

10,000
× S

versus [.6, .7)
10,000
× S (i.e., on the second decimal of the temperature being a 5 ver-

sus a 6), and would prefer staking it on the union of these events than on the event
[.8, .9)

10,000
× S. That is, as m → ∞ individuals exhibit unanimous revealed like-

lihoods for the almost-objective events ℘×
m
S, corresponding to the value λ(℘).

Formally, we have

Theorem 1 (Unanimous, outcome-invariant limiting revealed likelihoods). For
all disjoint finite interval unions ℘, ℘′ ⊆ [0, 1] with λ(℘) > (=) λ(℘′), the almost-
objective events ℘×

m
S and ℘′×

m
S satisfy

lim
m→∞W




x∗ on ℘×
m
S

x on ℘′×
m
S

f(·) elsewhere


 > (=)

all x∗�x
all f(·)∈A

lim
m→∞W




x on ℘×
m
S

x∗ on ℘′×
m
S

f(·) elsewhere


 (17)

for each event-smooth, outcome-monotonic preference function W (·) over A.

Thus whenever λ(℘) > λ(℘′), for any outcomes x∗ � x and any subjective act
f(·), the left act in (17) will be strictly preferred to the right act for all sufficiently
large m. Whenever λ(℘) = λ(℘′), all event-continuous equivalency measures8 of
these two acts will approach equality as m →∞.

8 When the outcome space X is a continuum, a standard equivalency measure of f(·) is its certainty
equivalent. If X is not a continuum but has a most and least preferred outcome x̄ and x, another
equivalency measure would be any event-equivalent, such as the state sf(·) ∈ S that solves W (x̄ on
[s, sf(·)]; x on (sf(·), s̄]) = W (f(·)).
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Property 2: Limiting independence from other subjective events. The limiting
revealed likelihoods of almost-objective events also exhibit the objective property
of being independent of the realization of any fixed subjective event E, in the same
sense in which the probability of an Anscombe-Aumann objective roulette wheel
event is independent of the outcome of their subjective horse race. Similarly, an
individual’s preference for betting on the second decimal of the temperature being a
5 or 6, versus it being an 8, will continue to hold even if the bet is made conditional
on the temperature also being at least 60◦. Even though individuals may differ in
their subjective probabilities of the conditioning event E = [60◦, 100◦], some may
consider it ambiguous, and othersmay have temperature-dependent utility, virtually
everyone with event-smooth preferences who viewsE as nonnull will view the pair
of joint events {second decimal of s is 5 or 6} ∩ E versus {second decimal of s
is 8} ∩ E as having the same likelihood ratio as the pair of unconditional events
{second decimal of s = 5 or 6} versus {second decimal of s = 8}, namely, a
likelihood ratio of 2:1. Formally, we have

Theorem 2 (Limiting independence of almost-objective likelihoods from sub-
jective realizations). For all disjoint finite interval unions ℘,℘′ ⊆ [0, 1] with
λ(℘) > (=)λ(℘′) and nonnull events E ∈ E , the events (℘×

m
S)∩E and (℘′×

m
S)∩E

satisfy

lim
m→∞W




x∗ on (℘×
m
S)∩E

x on (℘′×
m
S)∩E

f(·) elsewhere


 > (=)

all x∗�x
all f(·)∈A

lim
m→∞W




x on (℘×
m
S)∩E

x∗ on (℘′×
m
S)∩E

f(·) elsewhere


 (18)

for each event-smooth, outcome-monotonic preference function W (·) over A.

3.3 Betting preferences over almost-objective acts and mixtures

Property 3: Limiting probabilistic sophistication over almost-objective acts. Given
that as m → ∞ all event-smooth W (·) exhibit unanimous, outcome-invariant re-
vealed likelihoods for almost-objective events, it is no surprise that as m → ∞
they will also exhibit probabilistic sophistication over almost-objective acts. That
is, each event-smoothW (·) onA has an associated preference function VW(·) over
objective lotteries, such thatW (·)’s limiting evaluation of any almost-objective act
f(·) = [x1 on ℘1×m S; . . . ;xn on ℘n×m S] is determined solely by VW(·)’s evalu-
ation of its outcomes x1, . . . , xn and their limiting likelihoods λ(℘1), . . . , λ(℘n).
Formally, we have:

Theorem 3 (Limiting probabilistic sophistication over almost-objective acts).
For each event-smooth, outcome-monotonic preference function W (·) overA there
exists a preference function VW(·) over objective lotteries, satisfying strict first
order stochastic dominance preference, such that

lim
m→∞W

(
x1 on ℘1×mS ; . . . ;xn on ℘n×mS

)
(19)≡ VW

(
x1,λ(℘1); . . . ;xn,λ(℘n)

)
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for all almost-objective acts in A.

Thus, if two partitions {℘1, . . ., ℘n} and {℘′
1, . . ., ℘

′
n} of [0, 1] satisfy λ(℘i) =

λ(℘′
i) for each i, then as m,m′ →∞ every event-smooth W (·) will approach

indifference between the almost-objective acts [x1 on ℘1×m S ; . . . ;xn on ℘n×m S]
and [x1 on℘′

1×m′S ; . . . ;xn on℘′
n×m′S], and we refer to such pairs as probabilistically

equivalent almost-objective acts. The role of VW (·) as a complete summary and
predictor of W (·)’s “objective risk preferences” is explored further in Section 4.2
below.

Property 4: Reduction of almost-objective×subjective uncertainty. Even though
they are completely subjective acts, the mixtures [f1(·) on ℘1×m S ; . . . ; fn(·) on
℘n×mS] from (16) are seen to be the almost-objective analogues of classicAnscombe-
Aumann roulette/horse lotteries (f1(·), p1; . . . ; fn(·), pn), which can be viewed as
objective mixtures of the subjective acts f1(·), . . . , fn(·). Anscombe and Aumann
also considered horse/roulette lotteries [P1 on E1; . . . ;Pn on En], which can be
viewed as subjectivemixtures of the objective lotteriesP1, . . . ,Pn, or equivalently,
as mappings from subjective events to objective lotteries. As noted in Section 2.2,
researchers have postulated that preferences across these distinct types of prospects
are linked by the reduction of compound uncertainty principle, which states that
all prospects that imply the same mapping from events to lotteries will be viewed
as indifferent.

By definition, each horse/roulette lottery [P1 on E1; . . . ;Pn on En] al-
ready is a mapping from events to lotteries. For each roulette/horse lottery
(f1(·), p1; . . . ; fn(·), pn), its implied mapping from events to lotteries can be de-
rived by expressing its component acts f1(·), . . . , fn(·) in terms of the common
refinement {E∗

1 , . . . , E
∗
K} of their respective underlying partitions – that is, by

writing

f1(·) =
[
x1,1 on E∗

1 ; . . . ;x1,K on E∗
K

]
... (20)

fn(·) =
[
xn,1 on E∗

1 ; . . . ;xn,K on E∗
K

]
so we can write the roulette/horse lottery (f1(·), p1; . . . ; fn(·), pn) as(

[x1,1 on E∗
1 ; . . . ;x1,K on E∗

K ], p1 ; . . .
(21)

. . . ; [xn,1 on E∗
1 ; . . . ;xn,K on E∗

K ], pn
)
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and its implied mapping from events to lotteries is accordingly[
(x1,1, p1; . . . ;xn,1, pn) on E∗

1 ; . . . ; (x1,K , p1; . . . ;xn,K , pn) on E∗
K

]
(22)

The reduction of compound uncertainty principle thus asserts that the original
roulette/horse lottery (f1(·), p1; . . . ; fn(·), pn) would be viewed as indifferent to
its implied horse/roulette lottery (22), and furthermore, that all other roulette/horse
lotteries that yield the same (or probabilistically equivalent) impliedmappings from
events to lotteries would also be viewed as indifferent.

In anAnscombe-Aumann setting of objective×subjective uncertainty, it is nec-
essary to exogenously impose the reduction of compound uncertainty principle as
an additional restriction on preferences. However in our present completely sub-
jective framework, as m →∞ every event-smooth preference function W (·) will
inherently exhibit the reduction principle for almost-objective×subjective uncer-
tainty:

Given an almost-objective mixture [f1(·) on ℘1×m S ; . . . ; fn(·) on ℘n×m S ] of
subjective acts f1(·), . . . , fn(·), we can derive its implied mapping from events to
almost-objective acts by again expressing f1(·), . . . , fn(·) as in (20), so we can
write the mixture [f1(·) on ℘1×mS ; . . . ; fn(·) on ℘n×mS] as[

x1,1 on ℘1×m E∗
1 ; . . . ;x1,K on ℘1×m E∗

K ; . . . . . . ;

xn,1 on ℘n×m E∗
1 ; . . . ;xn,K on ℘n×m E∗

K

]
=

[
x1,1 on ℘1×m E∗

1 ; . . . ;xn,1 on ℘n×m E∗
1 ; . . . . . . ; (23)

x1,K on ℘1×m E∗
K ; . . . ;xn,K on ℘n×m E∗

K

]
=

[
[x1,1 on ℘1×mS; . . . ;xn,1 on ℘n×mS] on E∗

1 ; . . . . . . ;

[x1,K on ℘1×mS; . . . ;xn,K on ℘n×mS] on E∗
K

]
The final expression in (23) is seen to be the almost-objective analogue
of the implied event-to-lottery mapping (22), with the same subjective par-
tition {E∗

1 , . . . , E
∗
K}, and with (22)’s event-contingent objective lotteries

(x1,1, p1; . . . ;xn,1, pn) . . . (x1,K , p1 ; . . . ;xn,K , pn) replaced by (23)’s event-
contingent almost-objective acts [x1,1 on ℘1×mS; . . . ;xn,1 on ℘n×mS] . . . [x1,K on
℘1×m S; . . . ;xn,K on ℘n×m S]. Under objective×subjective uncertainty, the orig-
inal roulette/horse lottery (f1(·), p1; . . . ; fn(·), pn) and its implied mapping (22)
(which is a horse/roulette lottery) are distinct types of prospects, so any reduc-
tion principle ensuring their indifference must be exogenously imposed. But, in
the present purely subjective framework, the final item in (23) is simply a reex-
pression of the original almost-objective mixture [f1(·) on ℘1×m S; . . . ; fn(·) on
℘n×mS], and is thus automatically indifferent to it. The following result shows that
as m → ∞, all almost-objective mixtures that imply probabilistically equivalent
mappings from events to almost-objective acts will be viewed as indifferent by each
event-smooth W (·) – again without the need to impose any additional exogenous
reduction condition:
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Theorem 4 (Reduction of almost-objective×subjective uncertainty). If the
almost-objective mixtures [f1(·) on ℘1 ×m S; . . . ; fn(·) on ℘n ×m S] and [f̂1(·) on

℘̂1×mS; . . . ; f̂n̂(·)on ℘̂n̂×mS] imply probabilistically equivalent almost-objective acts

over each event in the common refinement of {f1(·), . . . , fn(·), f̂1(·), . . . , f̂n̂(·)},
then

lim
m→∞W

(
f1(·) on ℘1×mS; . . . ; fn(·) on ℘n×mS

)
(24)

= lim
m→∞W

(
f̂1(·) on ℘̂1×mS; . . . ; f̂n̂(·) on ℘̂n̂×mS

)
for each event-smooth, outcome-monotonic preference function W (·) over A.

Property 5: Under probabilistic sophistication, limiting independence of almost-
objective and subjective events. AlthoughTheorem 2 demonstrates that the limiting
revealed likelihood ranking of a pair of almost-objective events ℘×

m
S, ℘′×

m
S is

invariant to whether or not they are conditioned on a fixed subjective event E, the
opposite is generally not true. That is, an event-smooth preference function W (·)
could prefer to bet on a subjective event E versus E′, yet reverse these preferences
when they are conditioned on some almost-objective event ℘×

m
S, even for large

m. The reason is that without any additional regularity on beliefs, properties such
as ambiguity or state-dependence allow practically any configuration of betting
preferences over arbitrary subjective events.

However, for individuals whose subjective beliefs are regular enough to
be represented by well-defined subjective probabilities – that is, whose pref-
erence functions take the probabilistically sophisticated form WPS(f(·)) ≡
V (x1,µ(E1); . . . ;xn,µ(En)) – almost-objective and subjective events will exhibit
the limiting property of being mutually independent. Thus, in addition to the first
of the following two properties, which by Theorem 2 is already displayed by ev-
ery event-smooth W (·), every event-smooth WPS(·) will also exhibit the second
property:

• for any pair of almost-objective events ℘×
m
S, ℘′×

m
S and fixed nonnull subjective

eventE ∈ E , the limiting revealed likelihood ratio for the joint events (℘×
m
S) ∩

E versus (℘′×
m
S)∩E is the same as for℘×

m
S versus℘′×

m
S – namely λ(℘) : λ(℘′)

• for any pair of fixed subjective events E, E′ ∈ E and almost-objective event
℘×

m
S with λ(℘) > 0, the limiting revealed likelihood ratio for the joint events

(℘×
m
S) ∩ E versus (℘×

m
S) ∩ E′ is the same as for E versus E′ – namely

µ(E) :µ(E′)

The following result subsumes these two properties into the general “limiting in-
dependence” property that a probabilistically sophisticated individual’s limiting
likelihood of any joint event (℘×

m
S) ∩ E is given by the unanimously-held limit-

ing likelihood λ(℘) of the almost-objective event ℘×
m
S, multiplied by their own

subjective probability µ(E) of the subjective event E :
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Theorem 5 (Under probabilistic sophistication, limiting independence of al-
most-objective and subjective likelihoods). For each event-smooth, outcome-
monotonic, probabilistically sophisticated preference function WPS(·) over A, if
the almost-objective events ℘×

m
S, ℘′×

m
S and disjoint subjective events E,E′ ∈ E

satisfy λ(℘) ·µ(E) > (=) λ(℘′) ·µ(E′), then the joint events (℘×
m
S) ∩ E and

(℘′×
m
S) ∩ E′ satisfy

lim
m→∞WPS




x∗ on (℘×
m
S)∩E

x on (℘′×
m
S)∩E′

f(·) elsewhere


> (=)

all x∗�x
allf(·)∈A

lim
m→∞WPS




x on (℘×
m
S)∩E

x∗ on (℘′×
m
S)∩E′

f(·) elsewhere


 (25)

Property 6: Under expected utility, limiting linearity in almost-objective likeli-
hoods and mixtures. Expected utility is linear in objective probabilities, and
both state-independent and state-dependent expected utility are linear in objec-
tive mixtures of subjective acts. But whereas state-independent expected utility
WSEU (f(·)) ≡ ∑n

i=1 U(xi) ·µ(Ei) is also linear in the subjective probabilities
µ(E1), . . . , µ(En), this is generally not true of state-dependent expected utility
WSDEU (f(·)) ≡ ∑n

i=1

∫
Ei

U(xi|s)·dµ(s). That is, even if WSDEU (·)’s subjec-
tive probabilities for the acts f ′(·) = [x1 on E′

1; . . . ;xn on E′
n], f

′′(·) = [x1
on E′′

1 ; . . . ;xn on E′′
n] and f ′′′

m (·) = [x1 on E′′′
1 ; . . . ;xn on E′′′

n ] should satisfy
µ(E′′

i ) = α·µ(E′
i)+(1−α)·µ(E′′′

i ) for each i, its state-dependence will typically
imply

WSDEU

(
f ′′(·)) �= α·WSDEU

(
f ′(·)) + (1−α)·WSDEU

(
f ′′′(·)) (26)

But even though almost-objective events are subsets of the subjective state space
S, their properties in this regard are more similar to those of objective events
than to regular subjective events. Thus, if the limiting event likelihoods in the
almost-objective acts f ′

m(·) = [x1 on ℘′
1×mS ; . . . ;xn on ℘′

n×mS], f ′′
m(·) = [x1 on

℘′′
1×mS ; . . . ;xn on ℘′′

n×mS] and f ′′′
m (·) = [x1 on ℘′′′

1 ×mS ; . . . ;xn on ℘′′′
n ×mS] satisfy

λ(℘′′
i ) = α · λ(℘′

i) + (1 − α) ·λ(℘′′′
i ) for each i, then every event-smooth state-

independent and state-dependent expected utility preference function will exhibit
the limiting equalities

lim
m→∞ WSEU

(
f ′′
m(·)) =

α · lim
m→∞WSEU

(
f ′
m(·)) + (1−α)· lim

m→∞WSEU

(
f ′′′
m (·))

(27)

lim
m→∞ WSDEU

(
f ′′
m(·)) =

α · lim
m→∞WSDEU

(
f ′
m(·)) + (1−α)· lim

m→∞WSDEU

(
f ′′′
m (·))

Formally, we have:
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Theorem 6 (Under expected utility, limiting linearity in almost-objective like-
lihoods andmixtures). For each event-smooth, outcome-monotonic expected util-
ity preference function WSEU (f(·)) ≡ ∫

S
U(f(s))·dµ(s) or WSDEU (f(·)) ≡∫

S
U(f(s)|s)·dµ(s) over A, preferences over almost-objective acts satisfy

lim
m→∞WSEU

(
x1 on ℘1×mS; . . . ;xn on ℘n×mS

) ≡ n∑
i=1

λ(℘i)·U(xi)

(28)

lim
m→∞WSDEU

(
x1 on ℘1×mS; . . . ;xn on ℘n×mS

) ≡ n∑
i=1

λ(℘i)·
∫

S
U(xi|s)·dµ(s)

and preferences over almost-objective mixtures of purely subjective acts satisfy

lim
m→∞WSEU

(
f1(·) on ℘1×mS; . . . ; fn(·) on ℘n×mS

)
≡

∑n

i=1
λ(℘i) ·

∫
S
U(fi(s)) ·dµ(s)

(29)

lim
m→∞WSDEU

(
f1(·) on ℘1×mS; . . . ; fn(·) on ℘n×mS

)
≡

∑n

i=1
λ(℘i) ·

∫
S
U(fi(s)|s) ·dµ(s)

3.4 Ordinal implications of limiting preference function values

Since almost-objective events ℘×
m
S and almost-objective acts fm(·) = [x1 on

℘1×m S; . . . ;xn on ℘n×m S] do not exist at m = ∞, we have used their limiting
preference function values limm→∞ W (fm(·)) – which under event-smoothness
do exist – to represent the individual’s limiting beliefs and preferences toward
such objects. But since the limiting objects themselves do not exist, it is worth
clarifying what these limiting preference function values do and do not imply
about the individual’s limiting ordinal rankings of almost-objective acts, both with
respect to each other and with respect to other subjective acts in A.

Taken individually, each limiting preference function value w = limm→∞
W (fm(·)) corresponds to a unique, nonempty indifference class Iw of subjec-
tive acts in A. To see this, let x and x̄ be the least and most preferred outcomes in
{x1, . . . , xn}, so outcome monotonicity implies W (x̄ on S) ≥ w ≥ W (x on S),
and event-continuity implies some state sw ∈ S such that the act fw(·) = [x̄ on
[s, sw]; x on (sw, s̄] ] satisfiesW (fw(·)) = w. But sinceW (fm(·)) could converge
to the value w from above, from below, or by damped oscillation, the almost-
objective acts fm(·) needn’t converge to a stable preference ranking with respect
to fw(·) or any other act in the class Iw. However, the acts fm(·) do converge
to a stable ranking with respect to every other act in A. That is, for every act
f(·) ∈ A – Iw, limm→∞ W (fm(·)) > (<) W (f(·)) will imply fm(·) � (≺) f(·)
for all sufficiently large m.

Taken in pairwise comparisons, if the limiting preference function values for the
acts fm(·) = [x1 on℘1×mS ; . . . ;xn on℘n×mS] and f∗

m(·) = [x∗
1 on℘∗

1×mS ; . . . ;xn∗
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on ℘∗
n∗×

m
S] satisfy the inequality limm→∞ W (f∗

m(·)) > limm→∞ W (fm(·)),
then f∗

m(·) � fm(·) for all sufficiently large m. Although the equality limm→∞
W (f∗

m(·)) = limm→∞ W (fm(·)) = w needn’t imply a stable limiting ranking of
f∗
m(·) versus fm(·) (sinceW (f∗

m(·)) –W (fm(·)) could approach zero from above,
below, or by oscillation), it does imply that f∗

m(·) and fm(·) both converge to the
same limiting ranking with respect to every act f(·) ∈ A− Iw.

Taken collectively, the family of limiting values limm→∞ W (x1 on ℘1 ×mS ; . . . ;xn on ℘n×m S) for all almost-objective acts in A, or the family of limit-
ing preference function values for all almost-objective×subjective acts in A, can
be used to obtain exact, global results for all subjective acts in A, as seen in The-
orem 7, where a condition on these limiting values is shown to imply exact prob-
abilistic sophistication over all subjective acts in A. As outlined in Section 4.3,
additional results linking these limiting preference function values to exact global
properties of preferences over purely subjective acts, including characterizations of
comparative subjective likelihood, relative subjective likelihood, and comparative
risk aversion, are given in Machina (2002).

4 Applications

Since almost-objective events, acts and mixtures have essentially the same prop-
erties as their objective counterparts, their advantage does not lie in generating
new applications, but in extending existing applications of objective uncertainty to
completely subjective settings. This is similar to the analyses of Savage (1954) and
Anscombe and Aumann (1963), which also did not generate any new applications
of probability theory, but rather, extended it to subjective settings.9

4.1 Anscombe-Aumann without objective uncertainty

In their classic paper, Anscombe and Aumann (1963) provided a characterization
of probabilistic sophistication that was much simpler and more direct than that
of Savage (1954). Their three formal assumptions were: existence of exogenous
objective uncertainty (an objective×subjective framework), “independence of or-
der of resolution” of the objective and subjective uncertainty, and expected utility
risk preferences.Machina and Schmeidler (1995) retained the objective×subjective
framework and independence of order of resolution, but showed that the expected
utility hypothesis could be replaced by a weaker property on act preferences, as

9 In addition to the following applications, Joel Watson has observed that almost-objective events
can be used to approximate purified strategies (e.g., Harsanyi, 1973) in games when players do not have
common beliefs, or even knowledge of each other’s beliefs: In a game of matching pennies, if Player I
announces the strategy [Heads on [0, 1

2 ] ×
m

S ; Tails on ( 1
2 ,1] ×

m
S ] and Player II announces [Heads

on ([0, 1
4 ] ∪ ( 3

4 ,1]) ×
m

S ; Tails on ( 1
4 , 3

4 ] ×
m

S ], then every continuous-density subjective probability

measure on S will assign approximately 1
4 probability to each combination of plays. Eddie Dekel has

observed that a similar construction can approximate correlated equilibria, andQuiggin (2002) provides
an application of almost-objective events to the value of information under ambiguity.
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described below. By replacing objective×subjective uncertainty (that is, the com-
bination of a roulette wheel and a horse race) with almost-objective×subjective
uncertainty over a single subjective state space S = [s, s̄], we can obtain a di-
rect Anscombe-Aumann type characterization of exact probabilistic sophistication
without any of their original three assumptions – that is, without exogenous ob-
jective uncertainty, independence of order of resolution,10 or expected utility risk
preferences.

Machina and Schmeidler (1995) obtained probabilistic sophistication under
objective×subjective uncertainty by replacing the expected utility hypothesis with
the following property:

Horse/Roulette Replacement Axiom. For any partition {E1, . . . , En} of S, if

x∗ on Ei

x on Ej

x on Ek k �= i, j


 ∼




(x∗, α ;x, 1−α) on Ei

(x∗, α ;x, 1−α) on Ej

x on Ek k �= i, j


 (30)

for some outcomes x∗ � x, probability α ∈ [0, 1], and pair of events Ei and Ej ,
then 


Pi on Ei

Pj on Ej

Pk on Ek k �= i, j


 ∼




(Pi, α ;Pj , 1−α) on Ei

(Pi, α ;Pj , 1−α) on Ej

Pk on Ek k �= i, j


 (31)

for all objective lotteries P1, . . . ,Pn.

This axiom states that the ratio α :(1 − α) at which the individual is willing to
replace a pair of distinct prizes (either pure outcomes or objective lotteries) over
the events Ei and Ej with an objective probability mixture of these same prizes
over Ei ∪ Ej will not depend upon the specific prizes involved, or upon the prize
assigned to any other eventEk. Of course, the ratio α :(1−α)will turn out to equal
the individual’s subjective probability ratio µ(Ei):µ(Ej) for the two events.

To convert this axiom from objective×subjective uncertainty to almost-objec-
tive×subjective uncertainty over a single state space S = [s, s̄], we replace its ob-
jective lotteries (x∗, α ;x, 1−α) by the corresponding almost-objective acts [x∗ on
[0, α]×

m
S;xon (α, 1]×

m
S], its objective lotteriesPi =(xi,1,pi,1; . . . ;xi,Ki

,pi,Ki
)by

f i
m(·)= [xi,1 on℘i,1×mS; . . . ;xi,Ki

on℘i,Ki
×
m
S], and itsmixtures (Pi, α;Pj , 1−α)

= (xi,1, α ·pi,1; . . . ;xi,Ki , α ·pi,Ki ;xj,1, (1− α) ·pj,1; . . . ;xj,Kj , (1− α) ·pj,Kj )
by the mixtures α ·f i

m(·)⊕ (1−α)·f j
m(·)≡ [xi,1 on (℘i,1×1 [0, α])×

m
S; . . . ;xi,Ki

10 Independence of order of resolution is not needed since almost-objective×subjective acts are com-
pletely subjective and hence just involve a single stage of uncertainty, namely the realization of the
subjective state s ∈ S.
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on (℘i,Ki
×
1
[0, α])×

m
S;xj,1 on (℘j,1×1 (α, 1])×

m
S; . . . ;xj,Kj

on (℘j,Kj
×
1
(α, 1])×

m
S],

to obtain:11

Almost-Objective/Subjective Replacement Axiom. For any partition
{E1, . . . , En} of S, if

W




x∗ on Ei

x on Ej

x on Ek k �= i, j




(32)

= lim
m→∞W



[
x∗ on [0, α]×

m
S;x on (α, 1]×

m
S] on Ei[

x∗ on [0, α]×
m
S;x on (α, 1]×

m
S] on Ej

x on Ek k �= i, j




for some outcomes x∗ � x, value α ∈ [0, 1], and pair of events Ei and Ej , then

lim
m→∞W




f i
m(·) on Ei

f j
m(·) on Ej

fk
m(·) on Ek k �= i, j




(33)

= lim
m→∞W




α·f i
m(·)⊕ (1−α)·f j

m(·) on Ei

α·f i
m(·)⊕ (1−α)·f j

m(·) on Ej

fk
m(·) on Ek k �= i, j




for all almost-objective acts f1
m(·), . . . , fn

m(·).
An argument parallel to that of Machina and Schmeidler (1995) then yields the

following characterization of probabilistically sophisticated preferences over all
subjective acts f(·) ∈ A, where α : (1 − α) again turns out to be the individual’s
subjective probability ratio µ(Ei) :µ(Ej):12

Theorem 7 (Anscombe-Aumann without objective uncertainty). If an event-
smooth, outcome-monotonic preference function W (·) over A satisfies the Almost-
Objective/Subjective ReplacementAxiom, then it takes the globally probabilistically
sophisticated form WPS(f(·)) ≡ V (. . . ;xi, µ(Ei); . . .) for some finitely-additive
probability measure µ(·).

11 The mixture α · f i
m(·)⊕ (1−α) · fj

m(·) is neither a “two-stage” prospect nor an almost-objective
mixture of the almost-objective acts f i

m(·) and fj
m(·), but simply the standard (single-stage) almost-

objective act on S generated by the Ki+Kj outcomes {xi,1, . . . , xi,Ki
, xj,1, . . . , xj,Kj

} and the
(Ki+Kj)-element partition {℘i,1×

1
[0, α], . . . , ℘i,Ki

×
1

[0, α], ℘j,1×
1

(α, 1], . . . , ℘j,Kj
×
1

(α, 1]} of
[0, 1]. The following axiom can be stated directly in terms of the preference relation � by replacing
each equality by the condition that its left and right acts have the same limiting indifference class in A.
12 Adding the Sure-Thing Principle to the assumptions of Theorem 7 would yield an Anscombe-

Aumann type joint characterization of expected utility and subjective probability under completely
subjective uncertainty.



Almost-objective uncertainty 23

4.2 Separating objective risk preferences from state-dependence,
ambiguous beliefs, and attitudes toward ambiguity

In this section we consider the following question:

“When can we recover an individual’s objective risk preferences – that
is, the preferences they would exhibit in an idealized casino – from their
preferences over purely subjective acts?”

For a state-independent expected utility maximizer with subjective preference
function WSEU (f(·)) ≡ ∫

S
U(f(s)) ·dµ(s) the answer is straightforward – the

von Neumann-Morgenstern utility function U(·) derived from their preferences
over purely subjective acts would presumably also represent their preferences
over purely objective lotteries. For a state-dependent expected utility maximizer
with subjective preference function WSDEU (f(·)) ≡ ∫

S
U(f(s)|s)·dµ(s) the an-

swer is also straightforward: Since the expected utility of winning prize x in a
casino (and payable in every state of nature) is given by

∫
S
U(x|s) ·dµ(s), the

expected utility of any objective lottery (x1, p1; . . . ;xn, pn) is presumably just∑n
i=1

∫
S
U(xi|s) ·dµ(s) · pi. Finally, a probabilistically sophisticated individual

with subjective preference function WPS(f(·)) ≡ V (x1, µ(E1); . . . ;xn, µ(En))
would presumably rank objective lotteries according to their risk preference func-
tion V (x1, p1; . . . ;xn, pn).

The above derivations of objective risk preferences from subjective act prefer-
ences are possible because each of the forms WSEU (·),WSDEU (·) and WPS(·)
incorporates a separation of “beliefs” (as represented by µ(·)) from “risk pref-
erences” (as represented by U(·), U(·|·) or V (·)). However, a general subjective
preference function W (·) might not have such a well-defined separation, it might
not involve probabilistic beliefs at all but instead reflect ambiguity, and it might
exhibit an aversion (or preference) toward such ambiguity on top of any underlying
objective risk preferences. Complicating matters further is the fact that in a world
of two subjectively uncertain variables s ∈ S and t ∈ T (say temperature and
air pressure), an individual might exhibit vastly different state-dependence and/or
ambiguity properties with respect to these two variables.

But by use of almost-objective uncertainty, it is possible to recover the under-
lying objective risk preferences of any event-smooth W (·) – even in the presence
of state-dependence, ambiguity or ambiguity aversion – while remaining in a com-
pletely subjective setting. Furthermore, whereas other features of an individual’s
subjective act preferences – their subjective beliefs, state-dependence, ambiguity
and ambiguity attitudes – may well depend upon the source of subjective uncer-
tainty (that is, upon the particular subjective variable and state space), their objective
risk preferences will turn out to be invariant to the source of subjective uncertainty,
and will carry over unchanged from one state space to another. In particular, an
event-smooth individual’s preferences over almost-objective bets in any subjective
setting – even one that involves state-dependence, ambiguity or ambiguity aversion
– will serve to completely predict their objective risk preferences, and hence their
preferences over all bets in any idealized casino.

Theorem 3 showed that every event-smooth W (·) over subjective acts – even
if it exhibits state-dependence, ambiguity, or ambiguity aversion – has an associ-



24 M. J. Machina

ated function VW (·) that represents its limiting preferences over almost-objective
acts, in the sense that limm→∞ W (x1 on ℘1×m S ; . . . ;xn on ℘n×m S) ≡ VW (x1,
λ(℘1); . . . ;xn, λ(℘n)). To see why VW (·)might be viewed as representingW (·)’s
objective risk preferences, recall that as m → ∞ each event ℘i×m S in an almost-
objective act will exhibit all the belief and betting properties of an objective
event with probability λ(℘i). Thus as m → ∞ we would expect the act [x1 on
℘1 ×m S ; . . . ;xn on ℘n×m S] to be viewed as indifferent to the objective lottery
(x1, λ(℘1); . . . ;xn, λ(℘n)), so that the preference level of this objective lottery
would also be given by the expression VW (x1, λ(℘1); . . . ;xn, λ(℘n)).

In order to establish that VW (·) actually represents W (·)’s objective risk pref-
erences, we must formally demonstrate that it satisfies two properties:

1. VW (·) does not reflect or embody any of the state-dependence or ambiguity
properties associated with the particular source of subjective uncertainty (that
is, with the current state space).

2. VW (·) completely predicts – and can be completely predicted from – the in-
dividual’s behavior in any alternative setting they view as having completely
probabilistic uncertainty, free of any state-dependence or ambiguity, such as an
idealized casino.

Property 1 states that even if the individual should face two subjective variables
s ∈ S and t ∈ T with different state-dependence and ambiguity properties,
the limiting preference function values limm→∞ W (x1 on ℘1 ×m S ; . . . ;xn on
℘n×m S) and limm→∞ W (x1 on ℘1×m T ; . . . ;xn on ℘n×m T ) will both be given
by VW (x1, λ(℘1); . . . ;xn, λ(℘n)). Property 2 states that if their betting prefer-
ences over one of these variables (say t) exhibited no state-dependence or am-
biguity, and were in fact probabilistically sophisticated with respect to a uni-
form subjective probability measure λT (·) on T , then t could be viewed as an
idealized “casino variable,” and the individual’s preferences over all bets on t
would be represented by VW (·), via the formula W (x1 if t ∈ E1; . . . ;xn if
t ∈ En) ≡ VW (x1, λT (E1); . . . ;xn, λT (En)).

The following result establishes Property 1 by showing that if W (·) is event-
smooth over the set AS×T of subjective acts f(·, ·) on a state space S × T =
[s, s̄] × [t, t̄ ],13 then even though the individual’s beliefs, state-dependence and
ambiguity properties may be different for s and t, their limiting preferences over
almost-objective bets on s and almost-objective bets on t will be represented by
the same VW (·) function. In this sense, an individual’s objective risk preferences
are “more inherent” than either their state-independence/state-dependence or their
probabilistic vs. ambiguous belief properties, each of which can vary across differ-
ent subjective state variables.14

13 Formally,AS×T is the set of finite-outcome acts whose events consist of finite unions of rectangles
in S ×T . Event-smoothness over this bivariate act space is formally defined in the Appendix.
14 The objective risk preferences forWSEU (·),WSDEU (·) andWPS(·) listed in the first paragraph

of this section all follow as special cases of Theorem 8.
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Theorem 8 (Invariance of objective risk preferences to the source of subjec-
tive uncertainty). For each event-smooth, outcome-monotonic preference function
W (·) over AS×T there exists a preference function VW (·) over objective lotteries,
satisfying strict first order stochastic dominance preference, such that

lim
m→∞ W

(
x1 on (℘1×mS)× T ; . . . ;xn on (℘n×mS)× T )

≡ VW

(
x1, λ(℘1); . . . ; xn, λ(℘n)

) ≡ (34)

lim
m→∞ W

(
x1 on S × (℘1×m T ); . . . ;xn on S × (℘n×m T )

)
for all almost-objective acts in AS×T that depend solely on a single subjective
variable (s or t).

To see that this result also implies Property 2, consider an event-smooth W (·)
defined over acts on a given state space S = [s, s̄], which may exhibit state-
dependence, ambiguity and ambiguity aversion, and its associated VW (·) function.
By the theorem, every event-smooth extension of W (·) to acts on any state space
S×T = [s, s̄]×[t, t̄ ]will inherit the sameVW (·) function for acts that depend solely
on t. Say the extension is such that the individual is probabilistically sophisticated
for bets on t, with a uniform subjective probability measure λT (·) over T . In such a
case, t can be viewed as an idealized casino variable, involving no state-dependence
or ambiguity, so that the individual’s betting preferences on t will only reflect their
underlying objective risk preferences.15 Probabilistic sophistication over T and
Theorem 8 then imply

W
(
x1 if t∈E1; . . . ;xn if t∈En

)
= VW

(
x1, λT (E1); . . . ;xn, λT (En)

)
(35)

that is, the same function VW (·) that represents W (·)’s preferences over almost-
objective bets on the state-dependent and ambiguous state variable swill also repre-
sent preferences over all bets on the state-independent and completely probabilistic
“casino variable” t.

It is fair to say that the real world involvesmany subjectively uncertain variables
s ∈ S, t ∈ T , r ∈ R, . . . (or equivalently, a single high-dimensional state space
S×T ×R× . . .) and that a typical subjective prospect only depends upon one or a
few of these variables. The results of this section show that under event-smoothness,
the individual’sobjective risk preferenceswill be the same toward each state variable
(or subset of state variables), even though their subjective beliefs, state-dependence,
ambiguity and ambiguity attitudes may vary from variable to variable.

15 For exogeneity, we could also assume that beliefs on T are uniform even when conditioned on any
event in S.
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4.3 Generalized expected utility / subjective probability analysis
under subjective uncertainty

The approach of “generalized expected utility analysis” developed in Machina
(1982)16 provides a means by which the basic concepts, tools and result of expected
utility analysis under objective uncertainty can be extended to general probability-
smooth preference functions V (·) over objective lotteries. The key ideas in this
extension are that the observations that

• the classical expected utility form VEU (P) ≡ ∑n
i=1U(xi) ·pi is linear in the

probabilities
• standard expected utility concepts and results can thus be phrased in terms of

VEU (·)’s probability coefficients {U(x) |x∈X}, where U(x) = coefficient of
prob(x)

• standard calculus arguments allow us to extend most of these probability coef-
ficient results to the probability derivatives U(x;P) ≡ ∂V (P)/∂prob(x) of a
general probability-smooth V (·)

The key step in extending coefficient-based results to derivative-based results lies in
integrating along the “straight line path” between two objective lotteries P and P∗

– that is, the probability mixture path {Pα |α ∈ [0, 1]} = {(P∗, α;P, 1− α) |α ∈
[0, 1]}. For VEU (·), this line integral takes the form

VEU (P∗)− VEU (P) =
∫ 1

0

dVEU (P∗, α ;P, 1− α)
dα

· dα
(36)

=
∫ 1

0

∑
x∈X

U(x)·[prob∗(x)− prob(x)
]·dα

where the integrand denotes how for each outcome x, its probability change
prob∗(x)−prob(x) in going from P to P∗ is evaluated by VEU (·)’s correspond-
ing probability coefficient U(x). For a general probability-smooth V (·), this line
integral takes the analogous form

V (P∗)− V (P) =
∫ 1

0

dV (P∗, α ;P, 1− α)
dα

·dα
(37)

=
∫ 1

0

∑
x∈X

U(x;Pα)·[prob∗(x)− prob(x)
] ·dα

where the integrand now denotes how each of these probability changes is evaluated
by V (·)’s corresponding probability derivative U(x;Pα) at each distribution along
the path {Pα |α∈[0, 1]}. Thus the condition that U(x;P) be concave in x at each
P is both necessary and sufficient for the integrand in (37), hence its integrated
value V (P∗)− V (P), to be nonpositive whenever P∗ differs from P by a mean-
preserving increase in risk, so that the expected utility characterization of risk
16 See also the extensions and applications of Allen (1987), Bardsley (1993), Chew, Epstein and

Zilcha (1988), Chew, Karni and Safra (1987), Chew and Nishimura (1992), Karni (1987,1989) and
Wang (1993).
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aversion by the concavity of a cardinal function extends to general probability-
smooth V (·). Similar extensions hold for a large body of expected utility results
under objective uncertainty.

Machina (2002) extends this approach to subjective uncertainty, via the parallel
arguments that

• the classical expected utility/subjective probability forms WSEU (f(·)) ≡∑n
i=1 U(xi)·µ(Ei) and WSDEU (f(·)) ≡ ∑n

i=1

∫
Ei

U(xi|s)·dµ(s) are both
additive in the events

• standard expected utility/subjective probability results can be phrased in terms
of these functions’ evaluation measures Φx(E) ≡ U(x)·µ(E) for WSEU (·)
and Φx(E) ≡ ∫

E
U(x|s)·dµ(s) for WSDEU (·)

• standard calculus arguments allowus to extendmost of these evaluationmeasure
results to the event-derivatives (“local evaluationmeasures”){Φx(·; f) |x ∈ X}
of a general event-smooth W (·)

The analogue of (36)/(37) would be a line integral along a path {fα(·) |α ∈ [0, 1]}
from f(·) to f∗(·) whose integrand would denote how the global event changes
{f∗−1(x)− f−1(x) |x ∈ X} are evaluated by W (·)’s local evaluation measures
{Φx(·; fα) |x ∈ X} at each act along the path. But as shown in Machina (2002),
paths with this exact property cannot exist in the space A, essentially because one
cannot take exact “convex combinations” of subjective events. However as m →
∞, almost-objective mixture paths {fm

α (·) |α ∈ [0, 1]}∞
m=1 = {[f∗(·) on [0, α]×

mS; f(·) on (α, 1]×
m
S] |α∈[0, 1]}∞

m=1 will converge to this property, to yield exact
global extensions of the most basic classical results, including characterizations of
comparative subjective likelihood, relative subjective likelihood, and comparative
risk aversion.

4.4 Markets for almost-objective bets versus purely subjective bets

Individuals facing subjective uncertainty have at least four sources of gains from
trade: attitudes toward risk (either differences in risk aversion or outright risk pref-
erence); differences in beliefs; hedging against uncertain endowments; and diver-
sification of multiple risks. Of these four sources, the first most naturally leads to
trade in almost-objective bets, and the latter three most naturally lead to trade in
purely subjective bets.

For example, if individuals W (·) and W ∗(·) have nonrandom endowments x0
and x∗

0 and associated risk preference functions VW (·) and VW∗(·), at least one of
which is risk loving, then there exists an objective lottery P̂ = (. . . ; x̂i, p̂i ; . . . )
with VW (. . . ;x0 + x̂i, p̂i ; . . . ) > VW (x0, 1) and VW∗(. . . ;x∗

0 − x̂i, p̂i ; . . . ) >

VW∗(x∗
0, 1), and hence an almost-objective bet f̂m(·) = [. . . ; x̂i on ℘̂i×m S ; . . . ]

such that W (. . . ;x0+ x̂i on ℘̂i×mS ; . . . ) > W (x0 on S) and W ∗(. . . ;x∗
0− x̂i on

℘̂i×m S ; . . . ) > W ∗(x∗
0 on S). This phenomenon underlies the extensive amount

of real-world betting on coins, roulette wheels and similar mechanisms, which
as noted above, are examples of almost-objective bets generated from subjective
driving variables. Since the limiting event likelihoods for such bets are unaffected by
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differences in subjective beliefs, trade in them is not subject to the usual difficulties
that arise from asymmetric information or moral hazard. If one individual has an
almost-objective endowment and both are risk averse but not equally so, a similar
opportunity for trade in almost-objective bets will arise.

Given the prevalence of betting on such almost-objective events, one might ask
why financial markets don’t offer what might be termed almost-objective securities
or options. Such instruments would not be difficult to create – they could be defined
to pay off based on the k’th decimal of any security price, market index or publicly
observed variable. But it is precisely because of their objective-like properties
that such instruments could not serve any of the standard purposes of financial
instruments, which are the second, third and fourth of the above reasons for trade:

• Since they would approximate the objective property of unanimous likelihoods,
such almost-objective instruments would not permit gains from trade based on
differences in beliefs, which (as the saying goes) are a primary reason for horse
races, as well as for trade in financial instruments such as individual securities
or standard (i.e., purely subjective) options.

• Since they would approximate the objective property of independence of the
realization of subjective events, almost-objective instruments based on a partic-
ular index or security price could not serve to hedge against downside risk in that
variable, which is another primary purpose of options and related instruments.

• Since they would approximate objective probability mixtures rather than payoff
mixtures, almost-objective mixtures of securities could not serve to diversify
independent risks. Thus, if a probabilistically sophisticated investor believed
two securities to be independent and identically distributed, he or she would
view any almost-objective mixture of them as having approximately the same
distribution as each individual security, rather than one with a lower variance.

In other words, financial markets do not involve trade in almost-objective securi-
ties for the same reasons that they do not involve trade in bets based on physical
randomizing devices. Although we do not do so here, a formalization of the above
arguments would involve showing that for individuals with degenerate or almost-
objectively uncertain endowments, different risk preferences, and identical beliefs,
trade in almost-objective bets would (in the limit) weakly Pareto dominate trade
in purely subjective bets, and for individuals with degenerate or purely subjec-
tively uncertain endowments, identical risk preferences, and different beliefs, trade
in purely subjective bets would weakly Pareto dominate trade in almost-objective
bets.

5 Comparison and extensions

5.1 Comparison with related results under subjective uncertainty

Comparison with Ghirardato-Maccheroni-Marinacci-Siniscalchi mixtures: Ghi-
rardato, Maccheroni, Marinacci and Siniscalchi (2003) give an alternative sense in
which one purely subjective act can be thought of as a cardinal mixture of two other
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subjective acts. In their notation (where xEy denotes the act [x on E; y on ∼E]),
if the outcomes x, y, z, cxEz , czEy satisfy the preference conditions

cxEz ∼ xEz czEy ∼ zEy xEy ∼ cxEzEczEy (38)

then the outcome z can be described as a 50:50 “preference average” of outcomes
x and y.17 A 75:25 preference average of x and y can then be obtained by finding
a 50:50 preference average of x and z, etc. These authors then define a 50:50
mixture of two subjective acts f(·) and g(·) as any subjective act whose outcome
in each state s is a 50:50 preference average of the outcomes f(s) and g(s) in that
state, and 75:25 (and other) mixtures of f(·) and g(·) are defined similarly.

Unlike an objectivemixture (f(·), α ; g(·), 1−α) or an almost-objectivemixture
[f(·) on ℘×

m
S; g(·) on ∼℘×

m
S] – which are defined prior to and independently

of any individual’s preferences – a GMMS mixture of two subjective acts f(·)
and g(·) involves generating individual-specific preference-based mixtures of each
statewise outcome pair f(s), g(s). GMMS mixtures can accordingly be described
as preference-based “subjective cardinal mixtures,” and these authors have shown
how they can provide an alternative basis for axiomatizing the SEU, Choquet and
maxmin models of preferences over subjective acts.

Comparison with the Liapunov Convexity Theorem: Liapunov (1940) provides an
important result which, though not explicitly choice-theoretic, can still be inter-
preted as implying the existence of a family of events with unanimously agreed-
upon subjective probabilities for a given population of individuals. Most generally,
it states that the range of every finite, vector-valued, non-atomic, countably additive
measure Ψ(·) = (ψ1(·), . . . , ψK(·)) is closed and convex.18 In our present setting,
this implies the result:

“Given a family of nonatomic probabilitymeasures {µ1(·), . . . , µK(·)} over
S, for each probability p ∈ [0, 1] there exists an event Ēp ⊆ S such that
µk(Ēp) = p for k = 1, . . . ,K.”

This result is analogous toTheorem1 in that it identifies events that are unanimously
assigned a common likelihood by every member of some prespecified family of
individuals. One aspect of this result that is stronger than in Theorem 1 is that
the values µk(Ēp) = p are exact for each individual k and event Ēp, whereas the
revealed likelihoods in Theorem 1 are approximate and only hold exactly in the
limit. On the other hand, an aspect of this result that is weaker than in Theorem 1
is its restriction to a finite family of individual measures {µ1(·), . . . , µK(·)}.19

Another aspect of this result that is weaker than in Theorem 1 is its restriction
to measures {µ1(·), . . . , µK(·)} as the “inputs”. Thus, for it to apply to a family
{W1(·), . . . ,WK(·)} of preference functions over subjective acts, it would have
to be a family of probabilistically sophisticated preference functions Wk(f(·)) ≡
Vk(. . . ;xi, µk(Ei); . . .) or some other measure-based form. This contrasts with
Theorem 1, which applies to all event-smooth preference functions W (·).
17 For SEU or rank-dependent expected utility preferences, (38) implies U(z) = 1

2 ·U(x)+ 1
2 ·U(y).

18 See also the simplified proofs of Halmos (1948) and Lindenstrauss (1966).
19 Halmos (1948, Note 1) credits Liapunov (1946) with showing that neither convexity nor closure

necessarily follows in the case of an infinite number of measures.
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5.2 Analytical extensions

Extension to more general events: Although the almost-ethically-neutral and
almost-objective events defined above have an exactly periodic structure over the
state space S, the analysis of this paper will extend to more general types of events.
For example, instead of events℘×

m
S based on a fixed subset℘ ⊆ [0, 1] andm equal-

length intervals, we could define events E′
m based on m unequal-length intervals,

such as[
s, s+ ξ( 1

m )
)
, . . . ,

[
s+ ξ( i

m ), s+ ξ( i+1
m )

)
, . . . ,

[
s+ ξ(m−1

m ), s̄
]

(39)

for some increasing, onto and suitably regular20 function ξ(·):[0, 1] → [0, λS ],
where the union ℘×

m
S =

⋃m−1
i=0 {s+ (i+ω)·λS

m | ω ∈ ℘} from (10) is replaced by

E′
m =

⋃m−1

i=0

{
s + ξ( i

m ) + ω·(ξ( i+1
m )− ξ( i

m )
)∣∣ ω ∈ ℘

}
(40)

For each m, the Lebesgue measure of E′
m will continue to be exactly λ(℘)·λ(S).

As m → ∞, the proofs of the above theorems can be appropriately adapted, and
the events (40) can thus also be described as almost-objective, with a unanimous
limiting likelihood of λ(℘).

Conversely, one could also define a sequence of events E′′
m based on m equal-

length intervals as in (2), but a (regularly) variable finite interval subset {℘m}∞
m=1,

with the requirement that λ(℘m) = λ(℘1) for m = 2, 3, . . . Defining the events

E′′
m =

⋃m−1

i=0

{
s + (i + ω)·λS

m

∣∣ω ∈ ℘m

}
(41)

again yields a unanimous limiting revealed likelihood, equal to λ(℘1). Of course,
any combination of the generalizations (40) and (41) will yield similar results.
Given proper attention to issues of uniform convergence, themost general definition
of “almost-objective” events Em with a limiting likelihood of ρ ∈ [0, 1] would
presumably be one satisfying a condition such as

lim
m→∞λ

(
Em∩ [a, b]

)
= ρ · (b− a) for all [a, b] ⊆ [s, s̄ ] (42)

Extension to more general state spaces: As seen in Theorem 8, the approach of this
paper can also be applied to more general state spaces. Given any multivariate state
space S = [s1, s̄1] × . . . × [sK , s̄K ] ⊂ RK , we could replace the m equal-length
intervals in (2) by the mK equal-volume boxes obtained by partitioning S in each
dimension. S could also be a smooth manifold (such as the surface of a sphere), or
any space that can be “tiled” by arbitrarily small but suitably comparable measure
spaces.

Weakening event-smoothness: Although we have assumed event-smoothness, it is
clear that both Poincaré’s Theorem and the approach of this paper will also hold
for more general preferences, such as WSEU (f(·)) ≡ ∫

S U(f(s))·ν(s)·ds with

20 ξ(·) would be suitably regular provided ξ′(·) is bounded away from both 0 and +∞ over [0, 1].
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piecewise-continuous ν(·), or piecewise event-smooth W (·). However, to see that
event-continuity alone is not sufficient, and that some type of absolute continuity
condition is needed for both Poincaré’s Theorem and the analysis of this paper,
observe that the standard Cantor measure21 C(·) over S = [s, s̄] will not satisfy
the property limm→∞ C(Em) = 1

3 for the events Em = ( 1
3 ,

2
3 )×

m
S, since C(Em)

will equal 0 whenever m is a power of 3.

Dropping outcome-monotonicity: 22 Although the analysis of this paper did not
require that subjective act preferences be expected utility, state-independent or
probabilistically sophisticated, we did follow most of the literature in assuming
that preferences were outcome-monotonic, as defined in Section 2.1. Under ob-
jective uncertainty, outcome monotonicity is also known as first order stochastic
dominance preference.

Although outcome-monotonicity is natural for monetary outcomes, it may not
be so in other cases (Grant 1995). But without outcome-monotonicity there is no
longer a direct relationship between betting preferences and likelihood rankings,
even for purely objective events. Thus, if a preference function V (·) over objective
lotteries is not outcome-monotonic, it may prefer x∗ to x yet prefer (x, 2

3 ;x∗, 1
3 ) to

(x∗, 2
3 ;x, 1

3 ). But while dropping outcome-monotonicity breaks the link between
betting preferences and strict likelihood rankings for objective events, a link be-
tween betting preferences and equal likelihood remains: If two mutually exclusive
objective events have the same objective likelihood, even individuals who violate
outcome-monotonicity will be indifferent to swapping the payoffs assigned to these
events. This is generally not true for equal subjective likelihoods: the preference
function WSDEU (f(·)) ≡ ∫

S U(f(s)|s) ·dµ(s), even if it is outcome monotonic,
can satisfy both µ(E) = µ(E′) and WSDEU (x∗ on E;x on E′; f(·) elsewhere) �=
WSDEU (x on E;x∗ on E′; f(·) elsewhere).

But even in the absence of outcome-monotonicity, the limiting properties of
almost-objective events will continue to match the properties of objective rather
than fixed subjective events. That is, the arguments used in the Appendix can be
adapted to show that if two disjoint finite-interval unions ℘, ℘′ ⊆ [0, 1] satisfy
λ(℘) = λ(℘′), then ℘×

m
S and ℘′×

m
S satisfy

lim
m→∞W




x∗ on ℘×
m
S

x on ℘′×
m
S

f(·) elsewhere


 ≡

all x∗,x∈ X
all f(·)∈A

lim
m→∞W




x on ℘×
m
S

x∗ on ℘′×
m
S

f(·) elsewhere


 (43)

for every event-smoothW (·), whether or not it is outcome-monotonic, and theywill
retain this equal-likelihood betting property even when conditioned on an arbitrary

21 E.g., Billingsley (1986, pp. 427–429), Feller (1971, pp. 35–36) orRomano andSiegel (1986, pp. 27–
28).
22 I am grateful to Simon Grant for suggesting the key ideas of this section.
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fixed subjective event E:

lim
m→∞W




x∗ on (℘×
m
S)∩E

x on (℘′×
m
S)∩E

f(·) elsewhere


 ≡

all x∗,x∈X
all f(·)∈A

lim
m→∞W




x on (℘×
m
S)∩E

x∗ on (℘′×
m
S)∩E

f(·) elsewhere


 (44)

In addition, if two almost-objective acts [x1 on ℘1×mS; . . . ;xn on ℘n×mS] and [x1
on ℘∗

1×mS; . . . ;xn on ℘∗
n×mS] satisfy λ(℘i) = λ(℘∗

i ) for each i, they will continue
to satisfy limm→∞ W (x1 on ℘1×m S; . . . ;xn on ℘n×m S) = limm→∞ W (x1 on
℘∗

1×m S; . . . ;xn on ℘∗
n×m S). Similarly, if two almost-objective mixtures [f1(·) on

℘1×m S; . . . ; fn(·) on ℘n×m S] and [f∗
1 (·) on ℘∗

1×m S; . . . ; f∗
n∗(·) on ℘∗

n∗×
m
S] im-

ply probabilistically equivalent almost-objective acts over each event in the com-
mon refinement of {f1(·), . . . , fn(·), f∗

1 (·), . . . , f∗
n∗(·)}, they will continue to sat-

isfy a similar limiting equality. Each event-smooth W (·) will continue to have
an associated VW (·) satisfying limm→∞ W (x1 on ℘1×m S; . . . ;xn on ℘n×m S) ≡
VW (x1, λ(℘1); . . . ;xn, λ(℘n)), althoughVW (·) need no longer be outcome-mono-
tonic.

Finally, we can extend this approach to obtain natural definitions of compar-
ative objective and almost-objective likelihood, even in the absence of outcome-
monotonicity, by defining one event to be at least as likely as another if and only
if the first event possesses some subset that satisfies the equal-likelihood betting
property with respect to the second.

6 Modeling uncertainty and modeling uncertain choice:
some revised perspectives

6.1 Two types of events rather than two types of uncertainty

Poincaré’s theorem and the results of this paper argue for a new perspective on
the classic distinction between “objective” and “subjective” uncertainty. Although
the traditional view has been to distinguish objective processes (such as coin flips
or roulette wheels) from subjective processes (such as horse races or the tempera-
ture), a more unified perspective would be to recognize that virtually all uncertain
processes involve both completely subjective and (almost-) objective events.

We have seen that even in a purely subjective setting where the state is the
temperature, some events (such as whether its second decimal is even) will ex-
hibit the virtually unanimous revealed-likelihood properties of idealized objective
events. Even in Anscombe-Aumann’s canonical example of a “subjective” horse
race, where individuals may have diverse or even nonexistent beliefs over how fast
the horses may run, virtually everyone will exhibit a 50:50 revealed likelihood for
whether a given horse will complete the race in an even versus odd number of
milliseconds.

Conversely, the “objective” processes of spinning a roulette wheel or flipping
a balanced coin also include both types of events. The uncertain driving variable in
such processes is the force of the spin or flip, and we have seen that events such as
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“red” or “heads” attain their unanimous revealed-likelihood properties because of
their structure as almost-objective (i.e., periodic) events in the uncertain state space
of force levels. But other events defined on these processes, such as whether the
wheel will spinmore than 23 times before stopping, or the coinwill rotatemore than
19 times before landing, correspond to intervals or half-lines in the space of force
levels, and if we ask individuals for their subjective likelihoods of these events, we
can expect the same divergence (or even non-existence) of beliefs characteristic of
most subjective events.23

Thus, instead of the perspective that God throws two different types of dice
in the universe, we should adopt the perspective that, for virtually all uncertain
physical variables, individuals exhibit very different belief and betting properties
toward interval-based (i.e. subjective) events defined on these variables than toward
periodic (i.e. almost-objective) events defined on them. In other words, rather than
divide the universe into physical phenomena that do satisfy what Anscombe and
Aumann (1963) term the “physical theory of chances” and physical phenomena that
don’t, we should recognize that is their different types of events (periodic versus
interval), rather than different laws of physics, that make bets on spinning roulette
wheels different from bets on running horses.

6.2 Structural assumptions on the choice objects rather than structural
assumptions on choice

The results of this paper also suggest that both the abstract subjective setting of
Savage and the objective×subjective setting ofAnscombe-Aumann be replaced (or
at least supplemented) by the Euclidean subjective setting, with its real-valued state
space S = [s, s̄] or vector-valued state space S × T ×R× . . . = [s, s̄]× [t, t̄ ]×
[r, r̄]× . . . , as the most analytically fruitful setting for modeling economic choice
under uncertainty.

The Euclidean subjective setting is neither as general as that of Savage (who
posits an arbitrary infinitely divisible state space S), nor as simple as that of
Anscombe-Aumann (who besides their objective roulette wheel, posit only a fi-
nite set of states). However, the process of adding structure to an agent’s choice
space in order to obtain additional results is a standard one in economic analysis:
For example, although it is perfectly possible to axiomatize ordinal utility under
certainty for very general choice spaces, it is not until the choice space has a Eu-
clidean structure (i.e., becomes a space of commodity bundles) that powerful results
like the Slutsky equation will emerge.

The results of this paper have shown how adding structure to the subjective state
space – and hence to the objects of choice – allows us to obtain the benefits of prob-
ability theory under subjective uncertainty without having to impose the types of

23 This also holds if the process depends on more than one driving variable: Say that besides the force
of the flip, the behavior of the coin also depends on the (unknown) air pressure in the room. In this case,
the event “heads” will be a periodic (nonlinear checkerboard-like) event defined over a two-dimensional
subjective state space, whereas “rotates more than 19 times” will be a nonlinear half-region of this state
space.
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strong structural assumptions on act preferences or interpersonal beliefs required by
the other two approaches:Adding Euclidean structure to Savage’s state space yields
a family of subjective events with virtually objective revealed-likelihood and bet-
ting properties – not just for individuals who satisfy the Savage (1954) Sure-Thing
Principle P2 or the Machina-Schmeidler (1992) Strong Comparative Probability
Axiom P4∗ (both strong global assumptions on act preferences), but for all indi-
viduals with event-smooth act preferences. In addition, these properties emerge
directly from preferences (whether or not they are probabilistically sophisticated),
in contrast with the objective×subjective approach of Anscombe-Aumann, which
requires a prespecified family of events (roulette events) over which all agents must
have exogenous, identical beliefs.

From a modeling perspective, most situations of physical or economic uncer-
tainty can be represented as being driven by real- or vector-valued underlying state
variables: lightning strikes are driven by the electrical potential in the atmosphere;
earthquakes by geological pressure and resilience levels; and currency runs by
supply, demand and expectation levels. When state spaces are represented in such
Euclidean terms, it is reasonable to expect thatmost individual’s betting preferences
will be smooth with respect to small changes in the events, so the results of this
paper will apply. In other words, the assumption of event-smooth preferences in a
Euclidean subjective setting can be viewed as very general in its applicability, as
well as providing an underlying behavioral foundation for the theory of “objectively
uncertain” events.

While none of the three settings – Savage, Anscombe-Aumann, or Euclidean
subjective – scientifically dominates the others, a final scientific advantage of the
latter setting over the former two is that is it much easier to empirically verify strong
structural assumptions on the state space, than to verify strong global assumptions
on agents’ preferences, or strong unanimity assumptions on their beliefs.

Appendix

We define a preference function W (·) over A to be event-continuous if

lim
δ(f(·),f0(·))→0

W
(
f(·)) ≡

all f0(·)∈A
W

(
f0(·)

)
(A.1)

where the distance function δ(·, ·) between two acts is defined by

δ
(
f(·), f0(·)

)
= λ

{
s ∈ S ∣∣f(s) �= f0(s)

}
(A.2)

that is, as the Lebesgue measure of the set on which the acts differ. Just as differen-
tiability with respect to real variables can be thought of as “local linearity” in those
variables, differentiability with respect to an act f(·)’s events {f−1(x) |x ∈ X} can
be thought of as “local additivity” in these events. Formally,W (·) is event-additive
if there exists a family of (signed) evaluation measures {Φx(·) |x ∈ X} such that
it takes the form W (x1 on E1; . . . ;xn on En) ≡ Φx1(E1) + . . . + Φxn(En), that
is, where each outcome’s event Ei is additively evaluated by that outcome’s eval-
uation measure Φxi(·), and the terms are then summed. We can equivalently write
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this property as24

W
(
f(·)) ≡

all f(·)∈A

∑
x∈X

Φx

(
f−1(x)

)
(A.3)

By event-continuity, each evaluation measure Φx(·) will be absolutely contin-
uous with respect to Lebesgue measure, and thus have a signed evaluation den-
sity φx(·). The expected utility forms WSEU (f(·)) ≡ ∑n

i=1 U(xi) ·µ(Ei) and
WSDEU (f(·)) ≡∑n

i=1

∫
Ei

U(xi|s)·dµ(s) are both event-additive, with

for WSEU (·) :

{
Φx(E) ≡ U(x)·µ(E)

φx(s) ≡ U(x)·ν(s)
(A.4)

for WSDEU (·) :

{
Φx(E) ≡ ∫

E
U(x|s)·dµ(s)

φx(s) ≡ U(x|s)·ν(s)

In fact, as shown in Machina (2002), an event-continuous W (·) will be event-
additive if and only if it takes the state-independent or state-dependent expected
utility form WSEU (·) or WSDEU (·).

Under event-additivity, the change in W (·) in going from an act f0(·) to an
act f(·) can be expressed in terms of the changes (expansions and contractions)
∆E+

x = f−1(x) − f−1
0 (x) and ∆E−

x = f−1
0 (x) − f−1(x) in each outcome’s

event Ex, via the formula

W
(
f(·))−W

(
f0(·)

)
=

∑
x∈X

Φx

(
f−1(x)

)− ∑
x∈X

Φx

(
f−1
0 (x)

)
(A.5)

=
∑
x∈X

Φx

(
∆E+

x

) −
∑
x∈X

Φx

(
∆E−

x

)

An event-continuous W (·) is thus said to be event-differentiable at act f0(·) if it is
“locally” event-additive there – that is, if there exists a family of absolutely con-
tinuous local evaluation measures {Φx(·; f0) |x ∈ X}, with corresponding local
evaluation densities {φx(·; f0) |x ∈ X}, such that

W
(
f(·))−W

(
f0(·)

)
=

∑
x∈X

Φx

(
f−1(x); f0

)− ∑
x∈X

Φx

(
f−1
0 (x); f0

)
+ o

(
δ
(
f(·), f0(·)

))
(A.6)

=
∑
x∈X

Φx

(
∆E+

x ; f0
)− ∑

x∈X
Φx

(
∆E−

x ; f0
)

+ o
(
δ
(
f(·), f0(·)

))

To establish our results we must impose some regularity on how much each out-
come’s local evaluation density φx(· ; ·) can vary in its arguments s and f(·). Al-
though the space of acts A is not compact with respect to the distance function

24 Our restriction to finite-outcome acts ensures that all but a finite number of terms in the following
sum will be zero.
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δ(·, ·), our regularity conditions consist of the properties that continuous φx(· ; ·)
functions would exhibit if their domain S ×A was compact, namely:25

for each outcome x : φx(s;f) is uniformly continuous over S×A
for each outcome x : φx(s;f) is bounded above and below on S×A
for each pairx∗ � x
and nonnull event E :

Φx∗(E;f)− Φx(E;f) is bounded above and
bounded above 0, uniformly in f(·)

(A.7)

We thus define a general event-differentiable preference function W (·) on A to be
event-smooth if it satisfies these properties, which can be stated more formally as:

for each x ∈ X and ε > 0 there exists δx,ε > 0 such that |s′− s| < δx,ε
and δ(f ′(·), f(·)) < δx,ε implies |φx(s′; f ′)− φx(s; f)| < ε

for each x ∈ X there exist φ̄x and φx such that φ̄x > φx(s; f) > φx for
all s ∈ S and all f(·) ∈ A
for each pair x∗�x and nonnull E there exist Φ̄x∗,x,E > Φx∗,x,E > 0
such that Φ̄x∗,x,E > Φx∗(E; f)−Φx(E; f) > Φx∗,x,E for all f(·) ∈ A

(A.7′)

To see how event-differentiability can be applied to analyze W (·)’s ranking of
acts, define the single-sweep path {fω(·) |ω ∈ [s, s̄]} from the constant act [x0 on
S] to [x∗ on S] by

fω(·) =
[
x∗ on [s, ω];x0 on (ω, s̄]

]
(A.8)

As ω runs from s to s̄, the outcome x0 is seen to be replaced by x∗ over an
expanding event [s, ω] that uniformly “sweeps” across the state space S = [s, s̄].
Since the change sets in going from act fω̂(·) to fω̂+∆ω(·) are given by ∆E+

x∗ =
∆E−

x0
= (ω̂ , ω̂+∆ω], (A.6) and (A.2) imply

W
(
fω̂+∆ω(·))−W

(
fω̂(·))

(A.9)
= Φx∗

(
(ω̂, ω̂+∆ω]; fω̂

)− Φx0

(
(ω̂, ω̂+∆ω]; fω̂

)
+ o

(|∆ω|)
Dividing both sides by ∆ω and letting ∆ω → 0 yields

dW
(
fω(·))
dω

∣∣∣∣∣
ω= ω̂

= φx∗(ω̂; fω̂)− φx0(ω̂; fω̂) (A.10)

In other words, starting at the act fω̂(·), the differential effect of replacing x0 by x∗

at state s = ω̂ is given by the term φx∗(ω̂; fω̂)− φx0(ω̂; fω̂). From (A.4) it follows
that for the form WSEU (·) this term reduces to [U(x∗) − U(x0)] · ν(ω̂), and for

25 In line with our approach of placing no restrictions on nature or extent of the outcome space, we
impose no uniformity or boundedness conditions on φx(s; f) or Φx∗(E; f)−Φx(E; f) as x or x∗
range over X . Thus, we still allow outcomes to become arbitrarily “far apart” in preference, as with risk
neutral preferences over monetary lotteries.
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WSDEU (·) it reduces to [U(x∗|ω̂) − U(x0|ω̂)] ·ν(ω̂). Applying the Fundamental
Theorem of Calculus to (A.10) yields the path integral formula

W
(
x∗ on S)−W

(
x0 on S) =

∫ s̄

s

dW
(
fω(·))
dω

·dω
(A.11)

=
∫ s̄

s

[
φx∗(ω; fω)−φx0(ω; fω)

] ·dω
which exactly characterizes W (·)’s comparison of the acts [x0 on S] versus [x∗

on S] in terms of its local evaluation densities at the acts fω(·) along the path
{fω(·) |ω ∈ [s, s̄]} between them.

We define the single-sweep path between two nonconstant acts f(·) and f∗(·)
by

fω(·) =
[
f∗(·) on [s, ω]; f(·) on (ω, s̄]

]
(A.12)

in which caseW (·)’s path derivative and path integral formulas are similarly given
by

dW
(
fω(·))
dω

∣∣∣∣∣
ω=ω̂

= φf∗(ω̂)(ω̂; fω̂)− φf(ω̂)(ω̂; fω̂) (A.13)

W
(
f∗(·))−W

(
f(·)) =

∫ s̄

s

dW
(
fω(·))
dω

·dω
(A.14)

=
∫ s̄

s

[
φf∗(ω)(ω; fω)− φf(ω)(ω; fω)

]·dω
which again characterizeW (·)’s evaluation of f(·) versus f∗(·) in terms of its local
evaluation densities at the acts fω(·) along the path {fω(·) |ω ∈ [s, s̄]} between
them. W (·)’s path derivative along any almost-objective mixture path {fm

α (·)|α ∈
[0, 1]} = {[f∗(·) on [0, α]×

m
S ; f(·) on (α, 1]×

m
S] |α ∈ [0, 1]} from f(·) to f∗(·)

will be given by the “m-sweep” version of (A.13), namely (A.28) below.

Lemma. The following result gives conditions underwhich the integrals of a family
of functions on [s, s̄] can be uniformly approximated by their Riemann sums:

Lemma. Let the family of functions {g(·; τ) |τ ∈ T } over [s, s̄ ] be both uniformly
bounded and uniformly continuous over each interval Ej of some finite interval
partition {E1, . . . , EJ} of [s, s̄ ]. Then for each ε > 0 there exists some mε such
that

∣∣∣∣
∫ s̄

s

g(s; τ)·ds− λS
m
·
m−1∑
i=0

g
(
s+ (i+α)·λS

m ; τ
)∣∣∣∣ < ε

all m ≥ mε

all α ∈ [0, 1]

all τ ∈ T

(A.15)
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Proof of Lemma. Since the functions {g(·; τ)|τ ∈ T} are uniformly bounded over
each interval E1, . . . , EJ , they are uniformly bounded over [s, s̄] by some values
g < ḡ. Given ε > 0, uniform continuity on each intervalE1, . . . , EJ implies some
δε > 0 such that if s,s′ ∈ Ej and |s′−s| < δε then |g(s′; τ)−g(s; τ)| < ε/(2·λS)
for all τ ∈ T . Select mε such that λS/mε < min {δε , ε/(2·J ·(ḡ − g))}.

Given arbitrary m ≥ mε and arbitrary α ∈ [0, 1) (we treat the case of α = 1
below), partition [s, s̄] into the following intervals of length λS/m:

I0=
[
s, s+λS

m

)
, . . . , Ii=

[
s+ i·λS

m , s+ (i+1)·λS
m

)
, . . .

(A.16)
. . . , Im−1=

[
s+ (m−1)·λS

m , s̄
]

(For m = 1, define I0 = [s, s̄]). Observe that, for all i = 0, . . . ,m− 1, the value
s+ (i+α)·λs

m lies in Ii. For each interval Ii that lies wholly within some interval Ej

(and there can be up to m such intervals), the above uniform continuity property
implies∣∣∣∣

∫
Ii

[
g(s; τ)− g

(
s+ (i+α)·λS

m ; τ
)]·ds∣∣∣∣ <

all τ∈T

ε

2·λS
· λS
m

=
ε

2·m (A.17)

For each interval Ii that does not lie wholly within one of the intervalsE1, . . . , EJ

(and there can be up to J−1 such intervals), uniform boundedness implies∣∣∣∣
∫
Ii

[
g(s; τ)−g

(
s+ (i+α)·λS

m ; τ
)]·ds∣∣∣∣ ≤

all τ∈T
(ḡ−g)·λS

m
<

ε

2·J (A.18)

We thus have the following for all τ ∈ T :∣∣∣∣
∫ s̄

s

g(s; τ) ·ds − λS
m
·
∑m−1

i=0
g
(
s+ (i+α)·λS

m ; τ
)∣∣∣∣

=
∣∣∣∣∑m−1

i=0

∫
Ii

[
g(s; τ)− g

(
s+ (i+α)·λS

m ; τ
)]·ds ∣∣∣∣ (A.19)

≤
∑m−1

i=0

∣∣∣∣
∫
Ii

[
g(s; τ)− g

(
s+ (i+α)·λS

m ; τ
)]·ds ∣∣∣∣

< m · ε

2 ·m + (J − 1) · ε

2 ·J < ε

For the case α = 1, repeat the above argument with (A.16) replaced by the
equal-length intervals

I0=
[
s, s+λS

m

]
, . . . , Ii=

(
s+ i·λS

m , s+ (i+1)·λS
m

]
, . . . ,

(A.16′)
. . . , Im−1=

(
s+ (m−1)·λS

m , s̄
]

� 

Line Integral Approximation Theorem. The following result for characteriz-
ing W (·)’s evaluation of acts f(·) versus f*(·) differs from the characterization
formulas (A.11) and (A.14) in two respects: (i) it consists of the limit of a se-
quence of path integrals, and (ii) for each integral in this sequence, its integrand
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∑
x∈X [Φx(f∗−1(x); fm

α )− Φx(f−1(x); fm
α )] evaluates the same events – namely

the two acts’events {f−1(x) |x ∈ X} and {f∗−1(x) |x ∈ X} – at every point along
its path {fm

α (·) |α ∈ [0, 1]}.

Line Integral Approximation Theorem. If W (·) is event-smooth, then for any
acts f(·), f∗(·) and any ε>0 there exists mε such that for each m≥mε, W (·)’s
path derivative along the almost-objective mixture path {fm

α (·)|α∈ [0, 1]} =
{[f∗(·) on [0,α]×

m
S ; f(·) on (α, 1]×

m
S] |α∈[0,1]} from f(·) to f∗(·) exists and

satisfies∣∣∣∣dW
(
fm
α (·))

dα
−

∑
x∈X

[
Φx

(
f∗−1(x); fm

α

)− Φx

(
f−1(x); fm

α

)]∣∣∣∣ < ε (A.20)

at all but a finite number of values of α ∈ [0, 1].This in turn implies the line integral
approximation formula

W
(
f∗(·))−W

(
f(·))

(A.21)

= lim
m→∞

∫ 1

0

∑
x∈X

[
Φx

(
f∗−1(x); fm

α

)− Φx

(
f−1(x); fm

α

)]·dα
Proof. Given arbitrary ε > 0, represent the acts f(·) and f∗(·) as

f(·) = [x1 on E1; . . . ;xJ on EJ ] f∗(·) = [x∗
1 on E1; . . . ;x∗

J on EJ ] (A.22)

for some interval partition {E1, . . . , EJ} of [s, s̄], and define the two families of
functions {g(·; f̂) | f̂(·) ∈ A} and {g∗(·; f̂) | f̂(·) ∈ A} over [s, s̄] by

g(s; f̂) ≡
s,f̂(·)

φf(s)(s; f̂) g∗(s; f̂) ≡
s,f̂(·)

φf∗(s)(s; f̂) (A.23)

Since g(·; f̂) ≡ φxj(·; f̂) and g∗(·; f̂) ≡ φx∗
j
(·; f̂) over each interval Ej , we have

that for all f̂(·)∈A:

∫ s̄

s

g(s; f̂)·ds =
∑J

j=1

∫
Ej

φxj (s; f̂)·ds =
∑J

j=1
Φxj

(
Ej ; f̂

)
=

∑
x∈X

Φx

(
f−1(x); f̂

)
(A.24)∫ s̄

s

g∗(s; f̂)·ds =
∑J

j=1

∫
Ej

φx∗
j
(s; f̂)·ds =

∑J

j=1
Φx∗

j

(
Ej ; f̂

)
=

∑
x∈X

Φx

(
f∗−1(x); f̂

)

By event-smoothness, the families of functions {g(·; f̂) | f̂(·) ∈A} and {g∗(·; f̂) |
f̂(·) ∈ A} are uniformly bounded over eachEj . Similarly, {g(·; f̂) | f̂(·) ∈ A} and
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{g∗(·; f̂) | f̂(·) ∈ A} are uniformly continuous over each Ej . A double application
of the Lemma thus yields mε such that∣∣∣∣

∫ s̄

s

g(s; f̂) ·ds − λS
m
·
∑m−1

i=0
g
(
s + (i+α)·λS

m ; f̂
)∣∣∣∣ <

ε

2
(A.25)∣∣∣∣

∫ s̄

s

g∗(s; f̂) ·ds − λS
m
·
∑m−1

i=0
g∗(s + (i+α)·λS

m ; f̂
)∣∣∣∣ <

ε

2

and hence∣∣∣∣
∫ s̄

s

[
g∗(s; f̂ )− g(s; f̂ )

]·ds
(A.26)

−
∑m−1

i=0

λS
m
·
[
g∗(s+ (i+α)·λS

m ; f̂
)− g

(
s + (i+α)·λS

m ; f̂
)]∣∣∣∣ < ε

for all m ≥ mε, all α ∈ [0, 1] and all f̂(·) ∈ A.
Given arbitrary m ≥ mε, let {fm

α (·)|α ∈ [0, 1]} = {[f∗(·) on [0, α] ×
m
S ; f(·) on

(α, 1]×
m
S] |α ∈ [0, 1]} be the almost-objective mixture path from f(·) to f∗(·).

Although W (fm
α (·)) is continuous in α at all α ∈ [0, 1], in general it will only be

differentiable in α when each of the “front points” of its multiple sweep, that is,
when each of the m points

s + α·λS
m , . . . , s + (i+α)·λS

m , . . . , s + (m−1+α)·λS
m (A.27)

are continuity points of both f(·) and f∗(·). But this will be true at all but a finite
number of α in [0, 1], so that except at that this finite set of values, dW (fm

α (·))/dα
exists and is given by

dW
(
fm
α (·))

dα
=

∑m−1

i=0

λS
m
·
[
φ
f∗(s+ (i+α)·λS

m )

(
s+ (i+α)·λS

m ; fm
α

)
− φ

f(s+ (i+α)·λS
m )

(
s+ (i+α)·λS

m ; fm
α

)]
(A.28)

=
∑m−1

i=0

λS
m
·
[
g∗(s + (i+α)·λS

m ; fm
α

)− g
(
s+ (i+α)·λS

m ; fm
α

)]
Thus at all α ∈ [0, 1] except this finite set of values, we can evaluate (A.26) at
f̂(·) = fm

α (·) and substitute in (A.24) and (A.28) to obtain∣∣∣∣dW
(
fm
α (·))

dα
−

∑
x∈X

[
Φx

(
f∗−1(x); fm

α

)− Φx

(
f−1(x); fm

α

)]∣∣∣∣ < ε (A.29)

Toestablish the line integral approximation formula (A.21), consider arbitrary ε > 0
andobserve that for eachm ≥ mε, the fact that (A.29) holds at all but a finite number
of α in [0, 1] implies∣∣∣∣W(

f∗(·))−W
(
f(·))−∫ 1

0

∑
x∈X

[
Φx

(
f∗−1(x); fm

α

)−Φx

(
f−1(x); fm

α

)]·dα∣∣∣∣ =
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∣∣∣∣
∫ 1

0

dW
(
fm
α (·))

dα
·dα−

∫ 1

0

∑
x∈X

[
Φx

(
f∗−1(x);fm

α

)−Φx

(
f−1(x);fm

α

)]·dα∣∣∣∣ (A.30)

≤
∫ 1

0

∣∣∣∣dW
(
fm
α (·))

dα
−
∑
x∈X

[
Φx

(
f∗−1(x); fm

α

)−Φx

(
f−1(x); fm

α

)]∣∣∣∣ ·dα < ε � 

Proof of Theorem 0. Given arbitrary family of signed measures {K(·; τ) |τ ∈ T}
on S with uniformly bounded and uniformly continuous densities {k(·; τ) |τ ∈ T},
finite interval union℘ ⊆ [0, 1], interval E = [s1, s2] ⊆ S and ε > 0, we will obtain
mε such that |K(℘×

m
E; τ)−λ(℘)·K(E; τ)| < ε for allm > mε and all τ ∈ T . All

assertions of the theorem will follow from this, by additivity or as special cases.
Uniform boundedness implies some kmax ∈ (0,∞) such that |k(s; τ)| < kmax

for all s ∈ S and τ ∈ T , and uniform continuity implies some γ > 0 such that if
|s− s′| < γ then |k(s; τ)− k(s′; τ)| < ε/(2·λS) for all τ ∈ T . Select mε so that
λS/mε < min {γ, ε/(8·kmax)}, and consider arbitrary m > mε and τ ∈ T .

Of the m successive equal-length intervals

I0 =
[
s, s+ λS

m

)
, . . . , Ii =

[
s+ i·λS

m , s + (i+1)·λS
m

)
, . . .

(A.31)
. . . , Im−1 =

[
s + (m−1)·λS

m , s̄
]

exactly one (call it Ii) will contain s1, exactly one (call it Iī) will contain s2, and
each of the remaining intervals Ii will either be fully contained in E or disjoint
from E, which implies both

K
(
℘×

m
E; τ

)
=

∫
Ii∩(℘×

m
E)
k(s; τ) ·ds +

∑
Ii⊆E

∫
{s+ (i+ω)·λS

m |ω∈℘}
k(s; τ)·ds

(A.32)
+
∫
Iī∩(℘×

m
E)
k(s; τ) ·ds

λ(℘)·K(
E; τ

)
=

∫
Ii∩E

λ(℘) ·k(s; τ) ·ds +
∑
Ii⊆E

∫
Ii

λ(℘) ·k(s; τ) ·ds

(A.33)
+
∫
Iī∩E

λ(℘) ·k(s; τ) ·ds

The first and third integrals in (A.32) and (A.33) will each be less than kmax·λS/m
in absolute value. For each interval Ii ⊆ E, all states in Ii are within distance γ
of each other, so |k(s; τ)− k(s′; τ)| < ε/(2·λS) for all s, s′ ∈ Ii, which in turn
implies ∣∣∣∣k(s; τ)− m

λS
·
∫
Ii

k(s′; τ) ·ds′
∣∣∣∣ <

ε

2·λS
(A.34)

for all s ∈ Ii. Since λ{s+(i+ω)·λS/m | ω ∈ ℘} = λ(℘)·λS/m, for each Ii ⊆ E
we have∣∣∣∣

∫
{s+ (i+ω)·λS

m |ω∈℘}
k(s; τ)·ds −

∫
Ii

λ(℘)·k(s′; τ)·ds′
∣∣∣∣ =
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∣∣∣∣
∫

{s+ (i+ω)·λS
m |ω∈℘}

k(s; τ)·ds−
∫

{s+ (i+ω)·λS
m |ω∈℘}

m

λS
·ds ·

∫
Ii

k(s′; τ)·ds′
∣∣∣∣

=
∣∣∣∣
∫

{s+ (i+ω)·λS
m |ω∈℘}

[
k(s; τ)− m

λS
·
∫
Ii

k(s′; τ) ·ds′
]
·ds

∣∣∣∣ (A.35)

<

∫
{s+ (i+ω)·λS

m |ω∈℘}

ε

2 ·λS
·ds =

ε

2 ·λS
·λ(℘) · λS

m
≤ ε

2 ·m
Subtracting (A.33) from (A.32) and invoking the above inequalities yields∣∣∣K(

℘×
m
E; τ

)−λ(℘)·K(
E; τ

)∣∣∣ < 4·kmax·λS
m

+
∑
Ii⊆E

ε

2·m <
ε

2
+

ε

2
= ε (A.36)

� 

Proof of Theorem 1. This result follows from Theorem 2, by setting E in that
theorem equal to S. � 
Proof of Theorem 2. Given disjoint ℘, ℘′, nonnull event E ∈ E , outcomes x∗ � x
and act f(·) = [x1 on E1; . . . ;xn on En], define ℘0 = [0, 1]− (℘∪℘′). Since we
can express (18)’s left-hand acts fm(·) = [x∗ on ℘×

m
E;x on ℘′×

m
E; f(·) elsewhere]

as[
x∗ on ℘×

m
(E ∩E1); x on ℘′×

m
(E ∩E1); x1 on ℘0 ×

m
(E ∩E1); x1 on E1 − E; . . . ;

(A.37)
x∗ on ℘×

m
(E ∩En); x on ℘′×

m
(E ∩En); xn on ℘0 ×

m
(E ∩En); xn on En−E

]

an argument identical to Step 1 of the Proof of Theorem 4 establishes that limm→∞
W (fm(·)) exists. A similar argument establishes the existence of limm→∞
W (f ′

m(·)) for (18)’s right-hand acts f ′
m(·) = [x on ℘×

m
E;x∗ on ℘′×

m
E; f(·)

elsewhere].
For λ(℘) = λ(℘′), we establish limm→∞ W (fm(·)) = limm→∞ W (f ′

m(·))
by taking arbitrary ε > 0 and obtainingmε such that |W (f ′

m(·))−W (fm(·))| < ε
for all m > mε. Applying event-smoothness and Theorem 0 to the families of
signed measures {Φx∗(·; f) |f(·) ∈ A} and {Φx(·; f) |f(·) ∈ A} yields mε such
that ∣∣Φx∗(℘×

m
E; f)−λ(℘)·Φx∗(E; f)

∣∣ , ∣∣Φx(℘×m E; f)− λ(℘)·Φx(E; f)
∣∣
(A.38)∣∣Φx∗(℘′×

m
E; f)−λ(℘′)·Φx∗(E; f)

∣∣ , ∣∣Φx(℘′×
m
E; f)−λ(℘′)·Φx(E; f)

∣∣
are all less than ε/8 for all m > mε and all f(·) ∈ A. Select arbitrary m > mε

and consider the acts fm(·) and f ′
m(·). By (A.38) and λ(℘′) = λ(℘), we have∣∣∣Φx∗(℘×

m
E;f)−Φx∗(℘′×

m
E;f)+Φx(℘′×

m
E;f)−Φx(℘×mE;f)

∣∣∣ <
allf(·)∈A

ε

2
(A.39)

Defining {fk
α(·)|α ∈ [0, 1]}∞

k=1 = {[f ′
m(·) on [0, α] ×

k
S; fm(·) on (α, 1] ×

kS ] |α ∈ [0, 1]}∞
k=1 as the almost-objective mixture paths from f ′

m(·) to fm(·),
(A.21) implies

W
(
fm(·))−W

(
f ′
m(·))
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= lim
k→∞

∫ 1

0

∑
x∈X

[
Φx

(
f−1
m (x); fk

α

)− Φx

(
f ′−1
m (x); fk

α

)]·dα
(A.40)

= lim
k→∞

∫ 1

0

[
Φx∗

(
℘×

m
E; fk

α

)− Φx∗
(
℘′×

m
E; fk

α

)
+ Φx

(
℘′×

m
E; fk

α

)− Φx

(
℘×

m
E; fk

α

) ]·dα
By (A.39), the integrand in (A.40) is less than ε/2 in absolute value for allα ∈ [0, 1]
and all k, which implies |W (f ′

m(·))−W (fm(·))| < ε.
For λ(℘) > λ(℘′), we establish limm→∞ W (fm(·)) > limm→∞ W (f ′

m(·))
by obtaining obtain m̂ and δ > 0 such that W (fm(·)) −W (f ′

m(·)) ≥ δ/2 for all
m > m̂. Recall that Φx∗(E; f) − Φx(E; f) is bounded above 0 by some positive
Φx∗,x,E for all f(·) ∈ A, and define δ = [λ(℘)−λ(℘′)]·Φx∗,x,E . Applying event-
smoothness and Theorem 0 to {Φx∗(·; f) |f(·) ∈ A} and {Φx(·; f) |f(·) ∈ A}
yields an m̂ such that∣∣Φx∗(℘×

m
E;f)−λ(℘)·Φx∗(E;f)

∣∣ , ∣∣Φx(℘×m E;f)−λ(℘)·Φx(E;f)
∣∣

(A.41)∣∣Φx∗(℘′×
m
E; f)−λ(℘′)·Φx∗(E; f)

∣∣ , ∣∣Φx(℘′×
m
E; f)−λ(℘′)·Φx(E; f)

∣∣
are all less than δ/8 for all m > m̂ and all f(·) ∈ A, which in turn implies

Φx∗(℘×
m
E; f)− Φx∗(℘′×

m
E; f) + Φx(℘′×

m
E; f)− Φx(℘×m E; f)

(A.42)

> [λ(℘)− λ(℘′)] ·(Φx∗(E; f)− Φx(E; f)
)− δ/2 ≥ δ/2

for all m > m̂ and all f(·) ∈ A. Select arbitrary m > m̂ and consider the acts
fm(·) and f ′

m(·). Defining {fk
α(·) |α ∈ [0, 1]}∞

k=1 as the almost-objective mixture
paths from f ′

m(·) to fm(·) as before, (A.21) again implies

W
(
fm(·))−W

(
f ′
m(·))

= lim
k→∞

∫ 1

0

∑
x∈X

[
Φx

(
f−1
m (x); fk

α

)− Φx

(
f ′−1
m (x); fk

α

)] ·dα (A.43)

= lim
k→∞

∫ 1

0

[
Φx∗

(
℘×

m
E; fk

α

)− Φx∗
(
℘′×

m
E; fk

α

)
+ Φx

(
℘′×

m
E; fk

α

)− Φx

(
℘×

m
E; fk

α

)]·dα
By (A.42), the integrand in (A.43) is greater than or equal to δ/2 in absolute value
for all α ∈ [0, 1] and all k, which implies W (fm(·))−W (f ′

m(·)) ≥ δ/2 > 0. � 

Proof of Theorem 3. For given outcomes x1, . . . , xn and partition {℘1, . . . , ℘n}
define the acts fm(·) = [x1 on ℘1 ×m S; . . . ;xn on ℘n ×m S]. Step 1 shows that
{W (fm(·))}∞

m=1 is a Cauchy sequence in R1 and hence converges to some W̄ .
Step 2 shows that for any other partition {℘̂1, . . . , ℘̂n} with λ(℘̂i) = λ(℘i) for
i = 1, . . . , n, the acts f̂m(·) = [x1 on ℘̂1×mS; . . . ;xn on ℘̂n×mS] satisfyW (f̂m(·))−
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W (fm(·)) → 0, so W (f̂m(·)) also converges to W̄ , which we can accordingly
express as VW (x1, λ(℘1); . . . ;xn, λ(℘n)). (That VW (·) is a preference function
over objective lotteries follows from the preservation properties (11).) Step 3 shows
that VW (·) exhibits strict first order stochastic dominance preference.

Step 1. Given ε > 0, we needmε such that |W (fm′(·))−W (fm′′(·))| < ε for all
m′,m′′ > mε.Applying event-smoothness andTheorem 0 to each of then families
of signedmeasures {Φx1(·; f) |f(·) ∈ A}, . . . , {Φxn

(·; f) |f(·) ∈ A} yields anmε

such that, for i = 1, . . . , n

∣∣ Φxi(℘i×mS; f)− λ(℘i) ·Φxi(S; f)
∣∣ < ε/(4n)

all m > mε

all f(·) ∈ A (A.44)

Select arbitrary m′, m′′ > mε and consider the pair of acts fm′(·) and fm′′(·). By
(A.44) we have

∣∣ Φxi
(℘i×m′′S ; f)− Φxi

(℘i×m′S ; f)
∣∣ < ε/(2n)

i = 1, . . . , n
all f(·) ∈ A (A.45)

Defining {fk
α(·) |α ∈ [0, 1]}∞

k=1 as the almost-objective mixture paths from fm′(·)
to fm′′(·), (A.21) yields

W
(
fm′′(·))−W

(
fm′(·))

= lim
k→∞

∫ 1

0

∑
x∈X

[
Φx

(
f−1
m′′(x); fk

α

)− Φx

(
f−1
m′ (x); fk

α

)]·dα (A.46)

= lim
k→∞

∫ 1

0

∑n

i=1

[
Φxi

(
℘i×m′′S; fk

α

)− Φxi

(
℘i×m′S; fk

α

)]·dα
By (A.45), the integrand in (A.46) is less than ε/2 in absolute value for allα ∈ [0, 1]
and all k, which implies |W (fm′′(·)) −W (fm′(·))| < ε. But since m′ and m′′

were arbitrary integers greater than mε, this implies {W (fm(·))}∞
m=1 is a Cauchy

sequence, and hence converges to some W̄ .

Step 2. Take any other sequence of acts f̂m(·) = [x1 on ℘̂1×mS; . . . ;xn on ℘̂n×mS]
where λ(℘̂i) = λ(℘i) for i = 1, . . . , n. Given arbitrary ε > 0, we need m̂ε such
that |W (f̂m(·)) − W (fm(·))| < ε for all m > m̂ε. Applying Theorem 0 again
yields an m̂ε such that, for i = 1, . . . , n, both∣∣Φxi(℘i×mS; f)− λ(℘i) ·Φxi(S; f)

∣∣ < ε/(4n)∣∣Φxi(℘̂i×mS; f)− λ(℘̂i) ·Φxi(S; f)
∣∣ < ε/(4n)

all m > m̂ε

all f(·) ∈ A (A.47)

Select arbitrary m > m̂ε and consider the acts fm(·) and f̂m(·). By (A.47) and
λ(℘̂i) = λ(℘i) we have

∣∣Φxi(℘̂i×mS; f)− Φxi(℘i×mS; f)
∣∣ < ε/(2n)

i = 1, . . . , n
all f(·) ∈ A (A.48)
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Defining {f̂k
α(·) |α ∈ [0, 1]}∞

k=1 as the almost-objective mixture paths from fm(·)
to f̂m(·), (A.21) implies

W
(
f̂m(·))−W

(
fm(·))

= lim
k→∞

∫ 1

0

∑
x∈X

[
Φx

(
f̂−1
m (x); f̂k

α

)− Φx

(
f−1
m (x); f̂k

α

)]·dα (A.49)

= lim
k→∞

∫ 1

0

∑n

i=1

[
Φxi

(
℘̂i×mS; f̂k

α

)− Φxi

(
℘i×mS; f̂k

α

)]·dα
By (A.48), the integrand in (A.49) is less than ε/2 in absolute value for allα ∈ [0, 1]
and all k, which implies |W (f̂m(·))−W (fm(·))| < ε. But sincemwas an arbitrary
integer greater than m̂ε, this implies W (f̂m(·)) −W (fm(·)) converges to 0, and
hence that W (f̂m(·)) converges to W̄ .

Step 3. To establish strict first order stochastic dominance preference, it suffices
to show VW (P̂) > VW (P) for any P̂ = (x̂1, p1;x2, p2; . . . ;xn, pn) and P =
(x1, p1;x2, p2; . . . ;xn, pn) with x̂1 � x1 and p1 > 0. Select interval partition
{℘1, . . . , ℘n} of [0, 1] with λ(℘i) = pi for i = 1, . . . , n, and define f̂m(·) = [x̂1
on ℘1×m S; x2 on ℘2×m S; . . . ;xn on ℘n×m S] and fm(·) = [x1 on ℘1×m S;x2 on
℘2×m S; . . . ;xn on ℘n×m S]. Event-smoothness yields Φx̂1(S; f) − Φx1(S; f) ≥
Φx̂1,x1,S > 0 for all f(·) ∈ A, and event-smoothness and Theorem 0 yield some
m̂ such that ∣∣Φx̂1(℘1×mS; f)− λ(℘1) ·Φx̂1(S; f)

∣∣
and (A.50)∣∣Φx1(℘1×mS; f)− λ(℘1) ·Φx1(S; f)

∣∣
are both less than δ = λ(℘1) · Φx̂1,x1,S/4 for all m > m̂ and all f(·) ∈ A. Select

arbitrary m > m̂ and consider the acts f̂m(·) and fm(·). By (A.50) we have

Φx̂1(℘1×mS;f)−Φx1(℘1×mS;f) >λ(℘1)·
[
Φx̂1(S;f)−Φx1(S;f)

]−2·δ
(A.51)

≥ λ(℘1)·Φx̂1,x1,S − 2 ·δ = 2 ·δ > 0

for all f(·) ∈ A. Defining {fk
α(·)|α ∈ [0, 1]}∞

k=1 as the almost-objective mixture
paths from fm(·) to f̂m(·), (A.21) yields

W
(
f̂m(·))−W

(
fm(·)) =

(A.52)

lim
k→∞

∫ 1

0

[
Φx̂1

(
℘1×mS; fk

α

)− Φx1

(
℘1×mS; fk

α

)]·dα ≥ 2 ·δ > 0

Since m > m̂ was arbitrary, we thus have VW (P̂) = limm→∞ W (f̂m(·)) >
limm→∞ W (fm(·)) = VW (P). � 

Proof of Theorem 4. Since f∗
m(·) = [f1(·) on ℘1×m S; . . . ; fn(·) on ℘n×m S] and

f̂∗
m(·) = [f̂1(·) on ℘̂1×mS; . . . ; f̂n̂(·) on ℘̂n̂×mS] imply probabilistically equivalent
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almost-objective acts over each event in their common refinement {E∗
1 , . . . , E

∗
K},

we can define {x∗
1, . . . , x

∗
J} as the union of their payoffs, and write

f∗
m(·) =

[
x∗

1 on ℘1,1×m E∗
1 ; . . . ;x∗

J on ℘1,J ×m E∗
1 ; . . .

. . . ; x∗
1 on ℘K,1×m E∗

K ; . . . ;x∗
J on ℘K,J ×m E∗

K

]
(A.53)

f̂∗
m(·) =

[
x∗

1 on ℘̂1,1×m E∗
1 ; . . . ;x∗

J on ℘̂1,J ×m E∗
1 ; . . .

. . . ; x∗
1 on ℘̂K,1×m E∗

K ; . . . ;x∗
J on ℘̂K,J ×m E∗

K

]
where for each k = 1, . . . ,K, the partitions {℘k,1, . . . , ℘k,J} and {℘̂k,1, . . . ,
℘̂k,J} of [0, 1] satisfy λ(℘k,j) = λ(℘̂k,j) for j = 1, . . . , J . As in the proof
of Theorem 3, we show limm→∞ W (f∗

m(·)) = limm→∞ W (f̂∗
m(·)) by show-

ing that {W (f∗
m(·))}∞

m=1 is a Cauchy sequence in R1, and then that W (f∗
m(·))−

W (f̂∗
m(·)) → 0.

Step 1. Given ε > 0, we needmε such that |W (f∗
m′(·))−W (f∗

m′′(·))| < ε for all
m′,m′′ > mε. Applying Theorem 0 to each of theK·J combinations of ℘k,j , E∗

k ,
{Φx∗

j
(·; f)|f(·) ∈ A} yields an mε such that∣∣Φx∗

j
(℘k,j×m E∗

k ; f)− λ(℘k,j) ·Φx∗
j
(E∗

k ; f)
∣∣ < ε/(4 ·K ·J) (A.54)

for all m > mε, all k = 1, . . . ,K, all j = 1, . . . , J , and all f(·) ∈ A.
Select arbitrary m′,m′′ > mε and consider the acts f∗

m′(·) and f∗
m′′(·). By

(A.54) we have∣∣Φx∗
j
(℘k,j×m′′ E

∗
k ; f)− Φx∗

j
(℘k,j×m′ E

∗
k ; f)

∣∣ < ε/(2 ·K ·J) (A.55)

for all j = 1, . . . , J , all k = 1, . . . ,K, and all f(·) ∈ A. Defining {f∗"
α (·) |α ∈

[0, 1]}∞
"=1 = {[f ′

m(·) on [0, α] ×
�
S; fm(·) on (α, 1] ×

�
S] |α ∈ [0, 1]}∞

"=1 as the
almost-objective mixture paths from f∗

m′(·) to f∗
m′′(·), (A.21) implies

W
(
f∗
m′′(·))−W

(
f∗
m′(·)) =

(A.56)

lim
"→∞

∫ 1

0

K∑
k=1

J∑
j=1

[
Φx∗

j
(℘k,j×m′′E

∗
k ; f∗"

α )− Φx∗
j
(℘k,j×m′E

∗
k ; f∗"

α )
]·dα

By (A.55), the integrand in (A.56) is less than ε/2 in absolute value for allα ∈ [0, 1]
and all :, which implies |W (f∗

m′′(·))−W (f∗
m′(·))| < ε. But sincem′ andm′′ were

arbitrary integers greater than mε, this implies that {W (f∗
m(·))}∞

m=1 is a Cauchy
sequence, and hence converges to some W̄ ∗.

Step 2. Given arbitrary ε > 0, we need m̂ε such that |W (f̂∗
m(·))−W (f∗

m(·))| < ε
for all m > m̂ε. Applying Theorem 0 again yields an m̂ε such that both∣∣Φx∗

j
(℘k,j×m E∗

k ; f)− λ(℘k,j) ·Φx∗
j
(E∗

k ; f)
∣∣ < ε/(4 ·K ·J)

and (A.57)∣∣Φx∗
j
(℘̂k,j×m E∗

k ; f)− λ(℘̂k,j) ·Φx∗
j
(E∗

k ; f)
∣∣ < ε/(4 ·K ·J)
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for all m > m̂ε, all k = 1, . . . ,K, all j = 1, . . . , J , and all f(·) ∈ A.
Select arbitrarym > m̂ε and consider the acts f∗

m(·) and f̂∗
m(·). By (A.57) and

λ(℘k,j) = λ(℘̂k,j) we have∣∣Φx∗
j
(℘̂k,j×m E∗

k ; f)− Φx∗
j
(℘k,j×m E∗

k ; f)
∣∣ < ε/(2 ·K ·J) (A.58)

for all k = 1, . . . ,K, all j = 1, . . . , J , and all f(·) ∈ A. Defining {f̂∗"
α (·) |α ∈

[0, 1]}∞
"=1 as the almost-objective mixture paths from f∗

m(·) to f̂∗
m(·), (A.21) again

implies

W
(
f̂∗
m(·))−W

(
f∗
m(·)) =

(A.59)

lim
"→∞

∫ 1

0

K∑
k=1

J∑
j=1

[
Φx∗

j

(
℘̂k,j×m E∗

k ; f̂∗"
α

)− Φx∗
j

(
℘k,j×m E∗

k ; f̂∗"
α

)]·dα
By (A.58), the integrand in (A.59) is less than ε/2 in absolute value for allα ∈ [0, 1]
and all :, which implies |W (f̂∗

m(·))−W (f∗
m(·))| < ε. But sincemwas an arbitrary

integer greater than m̂ε, this implies that W (f̂∗
m(·)) −W (f∗

m(·)) converges to 0.
� 

Proof of Theorem 5. Given ℘, ℘′, disjoint E, E′, x∗ � x and f(·) = [x1 on
E1; . . . ;xn on En], probabilistic sophistication of WPS(·) implies

WPS

(
x∗ on (℘×

m
S)∩E;x on (℘′×

m
S)∩E′; f(·) elsewhere) =

V
(
x∗, µ(℘×

m
E);x, µ(℘′×

m
E′);x1, µ(E1 − ℘×

m
E − ℘′×

m
E′); . . . (A.60)

. . . ; xn, µ(En − ℘×
m
E − ℘′×

m
E′)

)
Theorem 0 implies limm→∞ µ(℘×

m
E) = λ(℘) ·µ(E) and limm→∞ µ(℘′×

m
E′) =

λ(℘′) ·µ(E′). Disjointness of E and E′ implies

µ
(
Ei−℘×

m
E−℘′×

m
E′) = µ(Ei)−µ

(
Ei∩(℘×

m
E)

)−µ
(
Ei∩(℘′×

m
E′)

)
(A.61)

= µ(Ei)− µ
(
℘×

m
(Ei∩E)

)− µ
(
℘′×

m
(Ei∩E′)

)
i = 1, . . . , n

so that Theorem 0 also implies

lim
m→∞µ

(
Ei − ℘×

m
E − ℘′×

m
E′) =

(A.62)

µ(Ei)− λ(℘) ·µ(Ei ∩ E)− λ(℘′)·µ(Ei ∩ E′) i = 1, . . . , n

Defining ρi = µ(Ei)− λ(℘) ·µ(Ei ∩E)− λ(℘′) ·µ(Ei ∩E′), continuity of V (·)
in each probability yields

lim
m→∞WPS

(
x∗ on (℘×

m
S)∩E ;x on (℘′×

m
S)∩E′; f(·) elsewhere)

(A.63)

= V
(
x∗, λ(℘)·µ(E);x, λ(℘′)·µ(E′);x1, ρ1; . . . ;xn, ρn

)
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Since we similarly have

lim
m→∞WPS

(
x on (℘×

m
S)∩E ;x∗ on (℘′×

m
S)∩E′ ; f(·) elsewhere)

(A.64)

= V
(
x, λ(℘)·µ(E);x∗, λ(℘′)·µ(E′); x1, ρ1; . . . ;xn, ρn

)
inequality (equality) (25) follows from first order stochastic dominance preference
of V (·). � 
Proof of Theorem 6. Weestablish the bottom equation in (29), which implies each of
the other assertions of the theorem. Given the subjective acts f1(·), . . . , fn(·) ∈ A
and partition {℘1, . . . , ℘n} of [0, 1], we can express f1(·), . . . , fn(·) in the form

f1(·) = [x1,1 on Ê1; . . . ;x1,J on ÊJ ]
... (A.65)

fn(·) = [xn,1 on Ê1; . . . ;xn,J on ÊJ ]

for some partition {Ê1, . . . , ÊJ} of S, so that we can express
(
f1(·) on ℘1×mS;

. . . ; fn(·) on ℘n×mS
)
as(

x1,1 on ℘1×m Ê1; . . . ;x1,J on ℘1×m ÊJ ; . . .
(A.66)

. . . ;xn,1 on ℘n×m Ê1; . . . ;xn,J on ℘n×m ÊJ

)
Recall that every event-smooth state-dependent expected utility preference func-
tion can be expressed in form WSDEU (f(·)) ≡ ∫

S
U(f(s)|s) · dµ(s) ≡∑

x∈X

∫
f−1(x) U(x|s) · ν(s) · ds ≡ ∑

x∈X Φx(f−1(x)), where each Φx(·) has a
bounded and continuous density φx(s) ≡ U(x|s) ·ν(s) on S. Thus we can write

WSDEU

(
f1(·) on ℘1×mS; . . . ;fn(·) on ℘n×mS

)≡ n∑
i=1

J∑
j=1

Φxi,j(℘i×m Êj) (A.67)

and Theorem 0 yields

lim
m→∞WSDEU

(
f1(·) on ℘1×mS; . . . ; fn(·) on ℘n×mS

)
= lim

m→∞

∑n

i=1

∑J

j=1
Φxi,j

(
℘i×m Êj

)
=

∑n

i=1
λ(℘i) ·

∑J

j=1
Φxi,j (Êj)

=
∑n

i=1
λ(℘i) ·

∑J

j=1

∫
Êj

U(xi,j |s) ·dµ(s)

=
∑n

i=1
λ(℘i) ·

∑J

j=1

∫
Êj

U (fi(s)|s) ·dµ(s)

=
∑n

i=1
λ(℘i) ·

∫
S
U (fi(s)|s) ·dµ(s) (A.68)

� 
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Proof of Theorem 7. Define VW (·) as from Theorem 3, and for each E ∈ E
define µ(E) ∈ [0, 1] as the unique solution to W (x∗ on E; x on ∼E) = limm→∞
W (x∗ on [0, µ(E)]×

m
S;x on (µ(E), 1]×

m
S), or equivalently, to W (x∗ on E;x on

∼E) = VW (x∗, µ(E);x, 1− µ(E)), so that µ(∅) = 0 and µ(S) = 1.
Picking an arbitrary act f(·) ∈ A is equivalent to picking an arbitrary partition

{E1, . . . , En} of S and then assigning arbitrary outcomes x1, . . . , xn to these
events. Consider an arbitrary partition {E1, . . . , En}, labeled so thatE1 is nonnull.
For i = 1, . . . , n− 1, let αi ∈ [0, 1] solve

W




x∗ on E1∪· · ·∪Ei

x on Ei+1

x on Ek k > i + 1


 =

(A.69)

lim
m→∞W



[
x∗ on [0, αi]×mS;x on (αi, 1]×

m
S] on E1∪· · ·∪Ei[

x∗ on [0, αi]×mS;x on (αi, 1]×
m
S] on Ei+1

x on Ek k > i+ 1




and define

τ1 = αn−1 · αn−2 · . . . · α3 · α2 · α1

τ2 = αn−1 · αn−2 · . . . · α3 · α2 · (1−α1)

τ3 = αn−1 · αn−2 · . . . · α3 · (1−α2)

τ4 = αn−1 · αn−2 · . . . · (1−α3)

...

τn−1 = αn−1 · (1−αn−2)

τn = (1−αn−1)

(A.70)

which satisfy τ1 + . . . + τn = 1. For arbitrary x1, . . . , xn, repeated application of
theAlmost-Objective/Subjective ReplacementAxiom, the definition of the mixture
operation α ·f i

m(·)⊕ (1− α) ·f j
m(·) (see Note 11), and Theorem 4 (Reduction of

Almost-Objective×Subjective Uncertainty) yields:

W




x1 on E1

x2 on E2

x3 on E3

...

xn on En




= lim
m→∞

W




[x1 on [0, α1]×m S; x2 on (α1,1]×m S] on E1

[x1 on [0, α1]×m S; x2 on (α1,1]×m S] on E2

x3 on E3

...
...

xn on En



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= lim
m→∞

W




[x1 on [0,α1·α2]×m S; x2 on (α1·α2, α2]×m S; x3 on (α2,1]×m S] on E1

[x1 on [0,α1·α2]×m S; x2 on (α1·α2, α2]×m S; x3 on (α2,1]×m S] on E2

[x1 on [0,α1·α2]×m S; x2 on (α1·α2, α2]×m S; x3 on (α2,1]×m S] on E3

x4 on E4

...
...

xn on En




= lim
m→∞

W




[x1 on [0, α1·α2·α3]×m S; x2 on (α1·α2·α3, α2·α3]×m S; on E1

x3 on (α2·α3, α3]×m S; x4 on (α3,1]×m S]

[x1 on [0, α1·α2·α3]×m S; x2 on (α1·α2·α3, α2·α3]×m S; on E2

x3 on (α2·α3, α3]×m S; x4 on (α3,1]×m S]

[x1 on [0, α1·α2·α3]×m S; x2 on (α1·α2·α3, α2·α3]×m S; on E3

x3 on (α2·α3, α3]×m S; x4 on (α3,1]×m S]

[x1 on [0, α1·α2·α3]×m S; x2 on (α1·α2·α3, α2·α3]×m S; on E4

x3 on (α2·α3, α3]×m S; x4 on (α3,1]×m S]

x5 on E5

...
...

xn on En




(A.71)

. . .

= lim
m→∞

W




[x1 on [0, τ1]×m S; . . . ; xi on (
∑i−1

j=1 τj ,
∑i

j=1 τj ]×m S; on E1

. . . ; xn on (
∑n−1

j=1 τj , 1]×m S]

...
...

[x1 on [0, τ1]×m S; . . . ; xi on (
∑i−1

j=1 τj ,
∑i

j=1 τj ] ×
m

S; on En

. . . ; xn on (
∑n−1

j=1 τj , 1] ×
m

S]




= lim
m→∞

W

(
x1 on [0, τ1]×m S; . . . ; xi on (

∑i−1
j=1 τj ,

∑i
j=1 τj ]×m S;

. . . ; xn on (
∑n−1

j=1 τj , 1] ×
m

S

)

Since λ( (
∑i−1

j=1 τj ,
∑i

j=1 τj ] ) = τi, Theorem 3 implies W (x1 on E1; . . . ;xn

onEn) = VW (x1, τ1; . . . ;xn, τn). Since the values τ1, . . . , τn were obtained from
E1, . . . , En independently of the outcomes x1, . . . , xn, for each i = 1, . . . , n we
can set xi = x∗ and xj = x for j �= i, to obtain W (x∗ on Ei ; x on ∼Ei) =
VW (x∗, τi ;x, 1− τi). This implies τi = µ(Ei) for each i, soW (x1 onE1; . . . ;xn

on En) = VW (x1, µ(E1); . . . ;xn, µ(En)).
To see that µ(·) is finitely additive, observe that for arbitrary disjoint events

E∗ and E we have VW (x∗, µ(E∗∪E);x, µ(∼(E∗∪E))) = W (x∗ on E∗∪E;x
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on ∼ (E∗∪E)) = W (x∗ on E∗;x∗ on E; x on ∼ (E∗∪E)) = VW (x∗, µ(E∗);
x∗, µ(E);x, µ(∼(E∗∪E))) = VW (x∗, µ(E∗)+µ(E);x, µ(∼(E∗∪E))). � 

For Theorem 8, we extend the analytical notions of this paper to a bivariate state
space S × T = [s, s̄] × [t, t̄ ] as follows: Define AS×T as the family of all finite-
outcome acts f(·,·) whose events are finite unions of rectangles in S × T ; define
λ(·) and λ(·,·) as univariate and bivariate uniform Lebesgue measure; define event-
continuity with respect to the distance function δ(f(·,·), f0(·,·)) ≡ λ{(s, t) ∈ S ×
T |f(s, t) �= f0(s, t)}; and adopt the corresponding bivariate versions of the change
sets∆E+

x and∆E−
x , of the event-differentiability formula (A.6), and of the event-

smoothness conditions (A.7)′ for the local evaluation measures {Φx(· ; f)|x ∈ X}
over bivariate events in S × T and local evaluation densities {φx(·,· ; f)|x ∈ X}
over S × T .

Proof of Theorem 8. Define W (·)’s restriction to acts on S, and to acts on T , by

WS

(
x1 on E1; . . . ;xn on En

) ≡ W
(
x1 on E1×T ; . . . ;xn on En×T

)
(A.72)

WT

(
x1 on Ê1; . . . ;xn on Ên

) ≡ W
(
x1 on S×Ê1; . . . ;xn on S×Ên

)
for arbitrary x1, . . . , xn and finite-interval partitions {E1, . . . , En} of S and
{Ê1, . . .,Ên}ofT . SinceWS(·) andWT (·) inherit event-smoothness andoutcome-
monotonicity, Theorem 3 implies preference functions VWS(·) and VWT (·), satis-
fying strict first order stochastic dominance preference, such that

lim
m→∞WS

(
x1 on ℘1×mS; . . . ;xn on ℘n×mS

)
(A.73)

≡ VWS
(
x1, λ(℘1); . . .;xn, λ(℘n)

)
lim

m→∞WT
(
x1 on ℘1×mT ; . . . ;xn on ℘n×mT

)
(A.74)

≡ VWT
(
x1, λ(℘1); . . .;xn, λ(℘n)

)
for arbitrary x1, . . . , xn and finite-interval partitions {℘1, . . . , ℘n} of [0, 1].

Define the acts fS
m(·,·) = [x1 on (℘1×mS)× T ; . . . ;xn on (℘n×mS)× T ] and

fT
m(·,·) = [x1 on S × (℘1×m T ); . . . ;xn on S × (℘n×m T )] from (34). To establish
the proof we will show limm→∞ W (fS

m(·,·)) = limm→∞ W (fT
m(·,·)), which by

(A.72) implies that (A.73) equals (A.74), and hence that VWS (·) ≡ VWT (·).
Given arbitrary ε > 0, we need mε such that |W (fS

m(·,·)) −W (fT
m(·,·))| <

ε for all m > mε. Applying bivariate event-smoothness and Theorem 0 to the
families of univariate measures {Φxj (·×T ; f) |f(·,·) ∈ AS×T }nj=1 and {Φxj (S×
· ; f) |f(·,·) ∈ AS×T }nj=1 yields an mε such that∣∣Φxj

(
(℘j×mS)×T ; f

)− λ(℘j)·Φxj(S×T ; f)
∣∣ < ε/(4n)

(A.75)∣∣Φxj

(S× (℘j×m T ); f
)− λ(℘j)·Φxj(S×T ; f)

∣∣ < ε/(4n)
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and hence ∣∣Φxj

(S × (℘j×m T ); f
)− Φxj

(
(℘j×mS)× T ; f

)∣∣ < ε/(2n) (A.76)

for all j = 1, . . . , n, all m > mε and all f(·,·) ∈ AS×T .
Select arbitrary m > mε and consider the acts fS

m(·,·) and fT
m(·,·). By bivari-

ate event-smoothness and the lemma, there exists large k such that each of the
expressions∣∣∣∣
∫ s̄

s

φfS
m(s,t)(s, t; f)·ds− λS

k
·
k−1∑
i=0

φ
fS

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
)∣∣∣∣

(A.77)∣∣∣∣
∫ s̄

s

φfT
m(s,t)(s, t; f)·ds− λS

k
·
k−1∑
i=0

φ
fT

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
)∣∣∣∣

is less than ε/(4 ·λT ) for all α ∈ [0, 1], all t ∈ T , and all f(·, ·) ∈ AS×T , where
λS = λ(S) and λT = λ(T ), so that each of the expressions∣∣∣∣

∫ t̄

t

∫ s̄

s

φfS
m(s,t)(s, t; f) ·ds ·dt

− λS
k
·
k−1∑
i=0

∫ t̄

t

φ
fS

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
) ·dt ∣∣∣∣

(A.78)∣∣∣∣
∫ t̄

t

∫ s̄

s

φfT
m(s,t)(s, t; f) ·ds ·dt

− λS
k
·
k−1∑
i=0

∫ t̄

t

φ
fT

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
) ·dt ∣∣∣∣

is less that ε/4 for all α ∈ [0, 1] and all f(·, ·) ∈ AS×T . This and (A.76) imply∣∣∣∣λS
k
·
k−1∑
i=0

∫ t̄

t

φ
fT

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
) ·dt

− λS
k
·
k−1∑
i=0

∫ t̄

t

φ
fS

m(s+ (i+α)·λS
k ,t)

(
s + (i+α)·λS

k , t; f
) ·dt∣∣∣∣ <

(A.79)∣∣∣∣
∫ t̄

t

∫ s̄

s

φfT
m(s,t)(s, t; f)·ds·dt−

∫ t̄

t

∫ s̄

s

φfS
m(s,t)(s, t; f)·ds·dt

∣∣∣∣ +
ε

2
=

∣∣∣∣
n∑

j=1

Φxj

(S× (℘j×m T ); f
)−∑n

j=1
Φxj

(
(℘j×mS)×T ; f

)∣∣∣∣ +
ε

2
< ε

for all α ∈ [0, 1] and all f(·, ·) ∈ AS×T . Define the path {f̂k
α(·, ·) |α ∈ [0, 1]} from

fS
m(·, ·) to fT

m(·, ·) by
f̂k
α(·,·) ≡ [

fT
m(·,·) on ([0, α]×

k
S)×T ; fS

m(·,·) on ((α, 1]×
k
S)×T ] (A.80)
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From bivariate event-differentiability, W (·)’s derivative at all but a finite number
of points along the path {f̂k

α(·,·) |α ∈ [0, 1]} is given by

dW
(
f̂k
α(·,·))

dα
=

k−1∑
i=0

λS
k
·
[ ∫ t̄

t

φ
fT

m(s+
(i+α)·λS

k ,t)

(
s + (i+α)·λS

k , t; f̂k
α

)·dt
(A.81)

−
∫ t̄

t

φ
fS

m(s+
(i+α)·λS

k ,t)

(
s + (i+α)·λS

k , t; f̂k
α

)·dt]

Since (A.79) implies |dW (f̂k
α(·,·))/dα| < ε except at this finite set of points, we

have ∣∣∣W(
fS
m(·,·))−W

(
fT
m(·,·)) ∣∣∣ =

∣∣∣∣
∫ 1

0

dW
(
f̂k
α(·,·))

dα
·dα

∣∣∣∣ < ε (A.82)

But sincemwas an arbitrary value greater thanmε, we have limm→∞ W (fS
m(·,·))

= limm→∞ W (fT
m(·,·)). � 
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Fréchet,M.:Méthode des fonctions arbitraires, théorie des événements en chaı́ne dans le cas d’unnombre
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