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as the basis of trade, it is an ideal set-up in which to isolate
the roles of factor endowments and intensity differences
that are unrelated to the basis of trade. For example,
Matsuyama (2007a) uses a two-country Ricardian model
to examine how factor intensity affects the extent of glo-
balization and how globalization affects factor prices
when certain factors are used more intensively in inter-
national trade than in domestic trade. The model is
Ricardian in the sense that the patterns of comparative
advantage are determined entirely by the exogenous tech-
nological differences. The factor proportions matter, how-
ever, because they determine the extent of globalization, as
the effective trade costs vary with the relative endowments
of the factor used intensively in international trade.
KIMINORI MATSUYAMA

See also comparative advantage; globalization; international
trade theory; terms of trade.
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risk

The phenomenon of risk is one of the key determining
factors in the formation of investment decisions, the
operation of financial markets, and several other aspects
of economic activity.

Risk versus uncertainty

The most fundamental distinction in this branch of eco-
nomic theory, due to Knight (1921), is that of ‘risk’ ver-
sus ‘uncertainty’. A situation is said to involve risk if the
randomness facing an economic agent presents itself in
the form of exogenously specified or scientifically calcu-
lable objective probabilities, as with gambles based on a
roulette wheel or a pair of dice. A situation is said to
involve uncertainty if the randomness presents itself in
the form of alternative possible events, as with bets on a
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horse race, or decisions involving whether or not to buy
earthquake insurance.

The standard approach to the modelling of preferences
under uncertainty (as opposed to risk) has been the state-
preference approach (for example, Arrow, 1964; Debreu,
1959, ch. 7; Hirshleifer, 1965; 1966; Karni, 1985; Yaari,
1969). Given the absence of exogenously specified objec-
tive probabilities, this approach represents the randomness
facing the individual by a set of mutually exclusive and
exhaustive states of nature or states of the world
& ={s1,...,5x}. Depending upon the particular appli-
cation, this partition of all conceivable futures may either
be very coarse, as with the pair of states (it snows here
tomorrow, it doesn’t snow here tomorrow) or else very
fine, so that the description of a single state might read ‘it
snows more than three inches here tomorrow and the
temperature in Paris at noon is 73° and the price of gold in
New York is over $900.00/ounce’. The objects of choice in
this framework consist of state-payoff bundles of the form
(¢p -.+»€n)> which specify the payoff that the individual will
receive in each of the respective states. As with regular
commodity bundles, individuals are assumed to have pref-
erences over state-payoff bundles which can be represented
by indifference curves in the state-payoff space {(cy, ..., c,)}.

Even though the state-preference approach has led to
important advances in the analysis of choice under
uncertainty (see, for example, the above citations), the
advantages of being able to draw on modern probability
theory has led economists to hypothesize that an indi-
vidual’s beliefs in such settings can nevertheless still be
represented by so-called personal probabilities or subjec-
tive probabilities, which take the form of an additive
subjective probability measure u(-) over the state space
& . In such a case, a given state-payoff bundle (¢, ...,c,)
will be viewed as yielding outcome ¢; with probability
u(s;), so that the individual would evaluate the bundle
(¢1y ...5¢,) in the same manner as he or she would eval-
uate a casino gamble which yielded the payoffs (cy, ..., ¢,)
with respective objective probabilities (pu(sy), ..., u(s,)).
The hypothesis that individuals have such probabilistic
beliefs and evaluate state-payoff bundles in such a man-
ner is termed the hypothesis of probabilistic sophistication,
and permits a unified application of probability theory to
the analysis of decisions under both objective risk and
subjective uncertainty. The joint hypothesis of probabi-
listic sophistication and expected utility risk preferences
has been axiomatized by Ramsey (1926), Savage (1954),
Anscombe and Aumann (1963), Pratt, Raiffa and
Schlaifer (1964) and Raiffa (1968, ch.5), and probabilis-
tic sophistication without expected utility has been
axiomatized by Machina and Schmeidler (1992).

Choice under risk: the expected utility model

For reasons of expositional ease, we consider a world with
a single commodity (for example, wealth). An agent
making a decision under either risk or probabilistic

uncertainty can therefore be thought of as facing a choice
set of alternative univariate probability distributions. In
order to consider both discrete (for example, finite out-
come) distributions as well as distributions with density
functions, we represent each such probability distribution
by means of its cumulative distribution function F(-),
where F(x) = prob (X3=x) for the random variable x.

In such a case we can model the agent’s preferences
over alternative probability distributions in a manner
completely analogous to the approach of standard (that
is, non-stochastic) consumer theory: he or she is
assumed to possess a ranking = over distributions
which is complete, transitive and continuous (in an
appropriate sense), and hence representable by a real-
valued preference function V(-) over cumulative distri-
bution functions, in the sense that F*()3=F(-) (that is,
the distribution F*(-) is weakly preferred to F( -)) if and
only if V(F*)=V(F).

Of course, as in the non-stochastic case, the above set
of assumptions implies nothing about the functional
form of the preference functional V{(-). For reasons of
both normative appeal and analytic convenience, econ-
omists typically assume that V(- ) is a linear functional of
the distribution F(-), and hence takes the form

V(F) = / U(x) dF(x) (1)

for some function U( - ) over wealth levels x, where U( -)
is referred to as the individual’s von Neumann—
Morgenstern utility function. (For readers unfamiliar with
the Riemann— Stieltjes integral f U(x)dF(x), it represents
nothing more than the expected value of U(X) when X
possesses the cumulative distribution function F(-).
Thus if X took the values x, ...,x, with probabilities
P1> ---» Py then fU(x)dF(x) would equal > U(x;)p;, and if
X possessed the density function f(-)=F/(-) then
JU(x)dF(x) would equal [U(x)f(x)dx.)

Since the right side of (1) may be thought of as the
mathematical expectation of U(X), this specification is
known as the expected utility model of preferences over
random prospects (for a more complete statement of this
model, see expected utility hypothesis). Within this
framework, an individual’s attitudes towards risk are
reflected in the shape of his or her utility function U(X).
Thus, for example, an individual would always prefer
shifting probability mass from lower to higher outcome
levels if and only if U(x) were an increasing function of x,
a condition which we shall henceforth always assume.
Such a shift of probability mass is known as a first order
stochastically dominating shift.

Risk aversion

The representation of an individual’s preferences over
distributions by the shape of his or her von Neumann—
Morgenstern utility function provides the first step in the
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Figure 1 Von Neumann-Morgenstern utility function of a

risk-averse individual

modern economic characterization of risk. After all, what-
ever the notion of ‘riskier’ means, it is clear that bearing a
random wealth x is riskier than receiving a certain pay-
ment of X = E[X] (the expected value of the random var-
iable X). We therefore have from Jensen’s inequality that
an individual would be risk averse, that is, would always
prefer a payment of E[X] (and obtaining utility U(E[X]))
to bearing the risk X (and obtaining expected utility
E[U(x)]) if and only if his or her utility function were
concave. This condition is illustrated in Figure 1, where
the random variable X is assumed to take on the values x’
and x” with respective probabilities 2/3 and 1/3.

Of course, not all individuals need be risk averse in the
sense of the previous paragraph. Another type of indi-
vidual is a risk lover. Such an individual would have a
convex utility function, and would accordingly prefer
receiving a random wealth X to receiving its mean E[X]
with certainty. An example of such a utility function is
given in Figure 2.

Standard deviation as a measure of risk

While the above characterizations of risk aversion and
risk preference allow for the derivation of many results in
the theory of choice under risk, they say nothing about
which of a pair of non-degenerate random variables x
and y is the more risky. Since real-world choices are
almost never between risky and riskless situations but
rather over alternative risky situations, such a means of
comparison is necessary.

The earliest and best-known univariate measure of the
riskiness of a random variable X is its variance ¢ =
E[(x — E[%])?] or alternatively its standard deviation
o =E[(x— E[fc])z]l/ *. The tractability of these measures,
as well as their well-known statistical properties, led to
the widespread use of mean-standard deviation analysis
in the 1950s and 1960s, and in particular to the
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Figure 2 Von Neumann-Morgenstern utility function of a risk-
loving individual

Figure 3
model

Portfolio analysis in the mean-standard deviation

development of modern portfolio theory by Markowitz
(19525 1959), Tobin (1958) and others. As an example of
this, consider Figure 3. Points A and B correspond to the
distributions of a riskless asset with (per dollar) gross
return r, and a risky asset with random return 7 with
mean y; and standard deviation ¢;. An investor dividing
a dollar between the two assets in proportions o:(1—0o)
will possess a portfolio whose return has a mean of o -
ro + (1 — o) - p; and standard deviation (1 — a) - o7, so
that the set of attainable (u,0) combinations consists of
the line segment connecting the points A and B in the
figure. It is straightforward to show that, if the individual
were also allowed to borrow at rate r, in order to finance
purchase of the risky asset (that is, could sell the riskless
asset short), then the set of attainable (¢,0) combinations
would be the ray emanating from A and passing through
B and beyond.

If we then represent the individual’s risk preferences by
means of indifference curves in this diagram, we obtain
his or her optimal portfolio (the example in the figure
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implies an equal division of funds between the two
assets). In the more general case of choice between a pair
of risky assets, the set of (1,0) combinations generated by
alternative divisions of wealth between them will trace
out a possibly nonlinear locus such as the one between
points C and D in the diagram, with the curvature
of this locus determined by the degree of statistical
dependence (that 1is, covariance) between the two
random returns.

As mentioned, the representation and analysis of risk
and risk-taking by means of the variance or standard
deviation of a distribution proved tremendously useful in
the theory of finance, culminating in the mean-standard
deviation-based capital asset pricing model of Sharpe
(1964), Lintner (1965), Mossin (1966) and Treynor
(1999). However, by the late 1960s the mean-standard
deviation approach was under attack for two reasons.

The first reason (known since the 1950s) was the fact
that an expected utility maximizer would evaluate all dis-
tributions solely on the basis of his or her means and
standard deviations if and only if their von Neumann—
Morgenstern utility function took the quadratic form
U(x) = ax + bx? for b < 0. The sufficiency of this con-
dition is established by noting that E[U(X)] = E[aXx +
bi®| = a-E[X] + b- (E[x]" + ¢%). To prove necessity, note
that the distributions that yield a 2/3:1/3 chance of the
outcomes (x — d) : (x +20) and a 1/3:2/3 chance of the
outcomes (x — 20) : (x + 0) both possess the same mean
and variance for each x and 0, so that (2/3) - U(x — d) +
(1/3)- U(x+20)=(1/3) - U(x —20) + (1/3) - U(x +
0) for all x and J. Differentiating with respect to o
and simplifying yields U’ (x + 20) + U’(x — 20) = U’ (x +
8)+ U'(x — &) for all x and . This implies that U'(-)
must be linear and hence that U( - ) must be quadratic.

The assumption of quadratic utility is objectionable. If
an individual with such a utility function is risk averse
(that is, if b<0), then (a) utility will decrease as wealth
increases beyond 1/(2b), and (b) the individual will be
more averse to constant additive risks about high wealth
levels than about low wealth levels — in contrast to the
observation that those with greater wealth take greater
risks (see for example Hicks, 1962, or Pratt, 1964).

Borch (1969) struck the second and strongest blow to
the mean-standard deviation approach. He showed that,
for any two points (u3,01) and (44,,0,) in the (@,0) plane
which a mean-standard deviation preference ordering
would rank as indifferent, it is possible to find random
variables x; and X, which possess these respective (u,0)
values and where X, first order stochastically dominates
X;. However, any person with an increasing von
Neumann—Morgenstern utility function would strictly
prefer X, to X;. In response to these arguments and the
additional criticisms of Feldstein (1969), Samuelson
(1967) and others, the use of mean-standard deviation
analysis in economic theory waned. See, however, the
work of Meyer (1987) for a partial rehabilitation of such
two-moment models of preferences.

Besides the variance or standard deviation of a distri-
bution, several other univariate measures of risk have been
proposed. Examples include the mean absolute deviation
E[|x — E[x]|], the interquartile range F'(.75)—F '(.25),
and the classical statistical measures of entropy > In(p;) - p;
or [In(fix)) - flx) - dx. Although they provide the conven-
ience of a single numerical index, each of these measures is
subject to problems of the sort encountered with the var-
iance or standard deviation. In particular, the entropy
measure is based exclusively on the probability levels of a
random variable, and is particularly unresponsive to its
outcome values — for example, the 50:50 gambles over the
values $49:$51 and $0:$100 possess identical entropy levels.

Increasing risk
By the late 1960s, the failure to find a satisfactory
univariate measure of risk led to another approach to this
problem. Working independently, several researchers
(Hadar and Russell, 1969; Hanoch and Levy, 1969; and
Rothschild and Stiglitz, 1970; 1971) developed an alter-
native characterization of increasing risk. The appeal of
this approach is twofold. First, it formalizes three differ-
ent intuitive notions of increasing risk. Second, it allows
for the straightforward derivation of comparative statics
results in a wide variety of economic situations. Unlike
the univariate measures described above, however, this
approach provides only a partial ordering of random
variables. In other words, not all pairs of random
variables can be compared with respect to their riskiness.
We now state three alternative formalizations of the
notion that a cumulative distribution function F*(-) is
riskier than another distribution F( - ) with the same mean.
In the following, all distributions are assumed to be over
the outcome interval [0, M] unless otherwise indicated.
The first definition of increasing risk captures the
notion that ‘risk is what all risk averters hate’ Thus an
increase in risk must lower the expected utility of all risk
averters. Formally:

(A) F*(-) and F(-) have the same mean and
JU(x)dF*(x) < [U(x)dF(x) for every concave utility
function U(-).

Note that this relationship will not be satisfied by every
pair of distributions with the same mean. That is to say,
there exist pairs F(-) and F*(-), with the same mean,
but such that some risk-averse utility functions prefer
F(-) to F*(-) but other risk-averse utility functions pre-
fer F*(-) to F(-). This reflects the above-stated fact that
comparative risk is a partial rather than a complete order
over the family of probability distributions, even over
families of distributions with a common mean.
(Although comparative risk is not a complete order, it
is a transitive order, in the sense that, if the pair F"(-)
and F(-) satisfy condition (A), and the pair F**(-) and
F*(.) satisfy condition (A), then the pair F**(.) and
F(-) will also satisfy condition (A).)
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The second characterization of the notion that a
random variable y with distribution F*(-) is riskier
than a variable x with distribution F( -) is that y consists
of the variable x plus an additional zero-mean noise
term & One possible specification of this is that ¢ sta-
tistically independent of x. However, this condition is too
strong in the sense that it does not allow the variance
of ¢ to depend upon the magnitude of X, as in the
case of heteroskedastic noise. Instead, Rothschild and
Stiglitz (1970) modelled the addition of noise by the
condition:

(B) F(-) and F*(-) are the respective cumulative distri-
bution functions of the random variables x and X + &, where
E[g|x] = 0 for all values of x.

The third notion of increasing risk involves the concept,
due to Rothschild and Stiglitz (1970), of a mean preserving
spread. Intuitively, such a spread consists of moving prob-
ability mass from some region in the centre of a prob-
ability distribution out to its tails in a manner that
preserves the expected value of the distribution, as seen in
the top panels of Figures 4 and 5. In the discrete case of
Figure 4, probability mass is moved from the pair of out-
come values b and ¢ out to the outcome values a and d. In
the continuous density case of Figure 5, probability mass
is moved from the interval (b, ¢) out to the intervals (a, b)
and (¢, d). We can unify, generalize and formalize this
condition by saying that F*(-) differs from F(-) by a
‘mean preserving spread’ if they have the same mean
and there exists a single crossing point x, such that
F*(x) > F(x) for all x < x, and F¥*(x) < F(x) for all x >
Xo (see the middle panels of Figures 4 and 5). Since it is
clear that sequences of such spreads will also lead to riskier
distributions, the third characterization of increasing risk is:

(C) F*(-) may be obtained from F(-) by a finite sequence, or
as the limit of an infinite sequence, of mean preserving spread.

Although the single crossing property of the previous
paragraph serves to characterize cumulative distribution
functions that differ by a single mean preserving spread,
distributions that differ by a sequence of such spreads
will typically not satisfy the single crossing condition.
However, if we consider the integrals of these cumulative
distribution functions, we see from the bottom panels of
Figures 4 and 5 that a mean preserving spread will always
serve to raise or preserve the value of this integral for
each x, and (since F*(-) and F(-) have the same mean)
will exactly preserve it for x=M. In contrast to the single
crossing property, this so-called ‘integral condition” will
continue to be satisfied by distributions which differ by a
sequence of one or more mean preserving spreads.
Accordingly, we may rewrite condition (C) above by the
analytically more convenient:

(C') The integral [;[F*(&) — F(&)] - d& is non-negative for
all x>0, and is equal to 0 at x=M.
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Figure 4 Mean preserving spread of a discrete distribution

Rothschild and Stiglitz (1970) showed that these three
concepts of increasing risk are the same by proving that
conditions (A), (B) and (C/C’) are equivalent. Thus, a
single partial ordering of distribution functions corre-
sponds simultaneously to the notion that risk is what risk
averters hate, to the notion that adding noise to a ran-
dom variable increases its risk, and to the notion that
moving probability mass from the centre of a probability
distribution to its tails increases the riskiness of the dis-
tribution. The original Rothschild-Stiglitz formulation
and proofs have since been further strengthened and
extended by Machina and Pratt (1997).

This characterization permits the derivation of general
and powerful comparative statics theorems concerning
economic agents’ responses to increases in risk. The general
framework for these results is that of an individual with a
von Neumann—Morgenstern utility function U(x, o) which
depends upon both the outcome of some random variable
x as well as a control variable o which the individual
chooses so as to maximize expected utility f Ulx, o0)dF(x; 1),
where the distribution function F(-;r) depends upon
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Figure 5 Mean preserving spread of a density function
some exogenous parameter r (x for example might be the
return on a risky asset, and o the amount invested in it).
For convenience, we assume that F(0;r) = prob(x <
0) > 0 for all . The first order condition for this problem
is then:

/Ua(x, o)dF(x;r) =0 (2)

where U, (x,a)=0U(x,)/0n, and we assume that the
second derivative U, (x, o) =0*U(x, 2)/0a? is always nega-
tive to insure we have a maximum. Implicit differentiation
of (2) then yields the comparative statics derivative:

do/dr = —/Uy(x,oc)dF,(x; r)/
/Um(x7 a)dF(x;r) (3)

where F,(x; r)=0F(x; r)/0r. Since the denominator of this
expression is negative by assumption, the sign of do/dr is

given by the sign of the numerator [U,(x,o)dF,(x;r).
Integrating by parts twice yields:

/mwmﬁﬂm

:/Um(x,a)~ [/OxFr(é;r)dé]dx

:/Um(x,oc)- [%/:F(é;r)dé}dx
(4)

Thus, if increases in the parameter r imply increases in
the riskiness of the distribution F(-,r), it follows from
condition (C') that the signs of the square-bracketed
terms in (4) will be non-negative, so that the effect of r
upon o depends upon the sign of U, (x, o) = O*U(x, )/
0x*Qor. Thus, if U,,(x, o) is uniformly negative a mean
preserving increase in risk in the distribution of x will
lead to a fall in the optimal value of the control variable
o, and vice versa. Another way to see this is to note that if
U, (x, ) is concave in x then a mean preserving increase
in risk will lower the left side of the first order condition
(2), which (since U,,(x, o) < 0) will require a drop in a
to re-establish the equality. Economists, mathematicians
and scientists routinely use this technique when analysing
models involving risk; see for example Rothschild
and Stiglitz (1971), Dionne, Eeckhoudt and Gollier
(1993), Eeckhoudt, Gollier and Schlesinger (1996), Jewitt
(1987), Ormiston (1992), Tzeng (2001), Nowak (2004),
Chateauneuf, Cohen and Meilijson (2004), Baker (2006),
and Beladi, de la Vina and Firoozi (2006).

Related topics

The characterization of risk outlined in the previous
section has been extended along several lines. Diamond
and Stiglitz (1974), for example, have replaced the notion
of a mean preserving spread with that of a mean utility
preserving spread to obtain a general characterization of a
compensated increase in risk. They relate this notion to the
well known Arrow—Pratt characterization of comparative
risk aversion (see EXPECTED UTILITY HYPOTHESIS).

In addition, researchers such as Ekern (1980),
Fishburn (1982), Fishburn and Vickson (1978), Hansen,
Holt, and Peled (1978), Tesfatsion (1976), and Whitmore
(1970) have extended the above work to the development
of a general theory of stochastic dominance, which pro-
vides a whole sequence of similarly characterized partial
orders on distributions, each presenting a corresponding
set of equivalent conditions involving algebraic condi-
tions on the distributions, types of spreads, and classes of
utility functions which prefer (or are averse to) such
spreads. The comparative statics analysis presented above
may be similarly extended to such characterizations. An
extensive bibliography of the stochastic dominance liter-
ature is given in Bawa (1982). Finally, various extensions
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of the notions of increasing risk and stochastic
dominance to the case of multivariate distributions
may be found in Epstein and Tanny (1980), Fishburn and
Vickson (1978), Huang, Kira and Vertinsky (1978),
Lehmann (1955), Levhari, Parousch and Peleg (1975),
Levy and Parousch (1974), Russell and Seo (1978),
Sherman (1951), and Strassen (1965); see also the
mathematical results in Marshall and Okun (1979).
MARK J. MACHINA AND MICHAEL ROTHSCHILD

See also expected utility hypothesis; risk aversion; uncertainty.
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risk aversion

Arrow-Pratt theory of risk aversion

The classical theory of risk aversion, due to Pratt (1964)
and Arrow (1965), is rooted in the expected utility theory
of decision making. An agent’s preferences are assumed
to have an expected utility representation. The objects of
choice are real valued random variables defined either
on a finite or infinite set of states of the world with
probabilities of states that may be either objective or
subjective. The intended interpretation of a random
variable is as an agent’s risky wealth.

An agent whose expected utility representation of
preferences is written E[u(x)], where u is the von
Neumann—Morgenstern utility function and E denotes
the expectation (expected value), is risk averse if

Efu(x)] < u(E(x)) (1)

for every risky wealth x. If (1) holds with strict inequality
for every non-deterministic X, the agent is strictly risk
averse. Jensen’s inequality implies that, if utility function
u is concave, the agent is risk averse. The converse is also
true. Thus, the concavity of u is a necessary and sufficient
condition for risk aversion. Moreover, strict concavity
of u is a necessary and sufficient condition for
strict risk aversion. Examples of strictly concave von
Neumann—Morgenstern utility functions, commonly
used in applied work, include the negative exponential
utility u(w) = e " with «>0, the logarithmic utility
u(w) =In(w), and the power utility u(w) = w'™*
with 0>0, a#1.

It is useful to have a measure of the intensity of risk
aversion. The most natural measure is risk compensation.
It is by definition the amount p(w,z) of deterministic
wealth one could extract from an agent in exchange for
relieving her of zero-expectation risk z at an initial



