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Abstract

Virtually all nonlinear economic models with independent, identically distributed stochastic

shocks and time-invariant structural parameters will generate persistent, partially predictable

heteroskedasticity (‘‘volatility clustering’’) in their key dependent variables. This paper offers

some examples of this phenomenon, derives i.i.d. shock, time-invariant structural forms which

generate various types of observed volatility clustering, and examines the modeling and

forecasting implications of such ‘‘structural attribution.’’
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1. Introduction

The goal of this paper is to explore ways in which the phenomenon of volatility
drift or volatility clustering, of the form modeled by ARCH and other stochastic
volatility specifications,1 can arise in, and in turn be modeled by, systems whose
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nonstochastic structure is time-invariant and whose stochastic shocks are all zero-
mean i.i.d. and consequently homoskedastic. In other words, we study volatility
clustering as it relates to the structural (i.e. deterministic and causal) properties of a
time-invariant economic system which is subject to irreducible ‘‘white noise’’
uncertainty, rather than as an exogenous stochastic property of a single time series
variable.

The following section presents some general mechanisms and specific examples of
how a time-invariant system subject to i.i.d. shocks can exhibit volatility clustering in
its key dependent variables. Section 3 motivates the notion of ‘‘structural
attribution’’ of observed volatility clustering by means of a similar but more
straightforward exercise, namely the structural attribution of observed serial

correlation in an economic time series. Section 4 presents i.i.d. shock, time-invariant
structural forms which generate several familiar types of volatility clustering, and
Section 5 explores the modeling and forecasting implications of such structural
attribution.
2. Induced volatility clustering

Volatility clustering can arise from a time-invariant structural form and zero-mean
i.i.d. shocks2 f~�tgt¼1;2;... and f~Ztgt¼1;2;... in either of two ways. The first involves a
multiplicative interaction

Y t ¼ Zt~�t, (1)

where Zt is any stationary or nonstationary drift variable with homoskedastic
innovation term ~Zt, such as the random walk, autoregressive or moving average
processes

Zt ¼
Xt

t¼1

~Zt or Zt ¼ rZt�1 þ ~Zt or Zt ¼ ~Zt þ g~Zt�1 (2)

or some combination of these. Past values of the dependent variable Yt and the drift
variable Zt are assumed to be directly observable and thus part of the information set
It. Past values of ~�t and ~Zt are not directly observable, though in some cases they
could be estimated or algebraically inferred from the data. We refer to any such
process for Yt as a drifting coefficient process. For such a process, the mean and
variance of Yt conditional on the information set It are given by

E½Y tjI t� ¼ E½Zt~�tjI t� ¼ E½ZtjI t�E½~�tjI t� ¼ 0, (3)

var½Y tjI t� ¼ E½Z2
t ~�

2
t jI t� ¼ E½Z2

t jI t�E½~�
2
t jI t� ¼ ½ðE½ZtjI t�Þ

2
þ s2~Z�s

2
~� (4)

and the latter is seen to drift over time with drift in the value of E[Zt|It]. For the three
drift processes listed in (2), E[Zt|It] takes the respective forms Zt21;rZt21, and
�S1t¼1ð�gÞ

tZt�t.
2Throughout this paper, tildes will be used to denote zero-mean, i.i.d. random variables.
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A second way in which volatility clustering can arise from a time-invariant
structure and a single source of zero-mean i.i.d. shocks f~Ztgt¼1;2;... is when a
conditionally homoskedastic drift variable Zt with a form such as (2) has a nonlinear
influence on the dependent variable Yt, either through an explicit or implicit
structural relationship of the form

Y t ¼ gðZtÞ or hðY tÞ ¼ Zt. (5)

We refer to this as a drifting input (or a drifting implicit input) process. For small
values of s2~Z, the conditional mean and variance of Yt for the relationship Yt ¼ g(Zt)
can be approximated by

E½Y tjI t� � gðE½ZtjI t�Þ, (6)

var½Y tjI t� � g0ðE½ZtjI t�Þ
2s2~Z. (7)

When g00ð�Þa0 the volatility of Yt is seen to drift with E[Zt|It], even for a
time-invariant s2~Z. The conditional mean and variance of Yt for the relationship
h(Yt) ¼ Zt can be approximated by E½Y tjI t� � h�1ðE½ZtjI t�Þ and var½Y tjI t� � h0

ðh�1ðE½ZtjI t�ÞÞ
�2s2~Z, which similarly yields volatility clustering.

A structural model can simultaneously exhibit volatility clustering due to both

drifting coefficient and drifting input effects, such as the form

Y t ¼ f ðZt; ~�tÞ (8)

which can be taken either as a direct structural equation for Yt, or else as its reduced
form equation from an underlying structural model. For small values of s2~Z and s2~� ,
the conditional mean and variance of Yt can be approximated by

E½Y tjI t� � f ðE½ZtjI t�;E½~�tjI t�Þ ¼ f ðE½ZtjI t�; 0Þ, (9)

var½Y tjI t� � f ZðE½ZtjI t�; 0Þ
2s2~Z þ f �ðE½ZtjI t�; 0Þ

2s2~� . (10)

When fZZ(E[Zt|It],0) 6¼0, the conditional variance of Yt is seen to drift with E[Zt|It]
even for time-invariant s2~Z, which is another example of the drifting input process (5).
When f Z�ðE½ZtjI t�; 0Þa0, the conditional variance of Yt is seen to drift with E[Zt|It]
even for time-invariant s2~� , which is a generalized version of the drifting coefficient
process (1), with ~�’s original drifting coefficient Zt replaced by its drifting partial
derivative f �ðE½ZtjI t�; 0).

2.1. Example: price of a standard commodity

The most basic structural model in economics is the supply-demand model
for a standard (flow) commodity. As a simple example, consider a commodity
with a deterministic market supply function QS(Pt), and market demand
function QDðPt;ZtÞ þ ~�t in terms of the commodity price Pt, an economic input Zt

(such as income or the price of another good) that follows a conditionally
homoskedastic drift processes as in (2), and zero-mean i.i.d. demand
shocks f~�tgt¼1;2;.... The equilibrium price Pt

e in period t is determined by the market
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clearing condition

QDðPe
t ;ZtÞ þ ~�t ¼ QSðPe

t Þ. (11)

For small departures of Zt from its conditional mean E[Zt|It] and small values of ~�t
about its mean of 0, we have

dPe
t ¼

QD
Z ðE½P

e
t jI t�;E½ZtjI t�ÞdZt þ d~�t

QS
PðE½P

e
t jI t�Þ �QD

P ðE½P
e
t jI t�;E½ZtjI t�Þ

. (12)

For small values of s2~Z and s2~� the conditional variance of Pt
e can accordingly be

approximated by

var½Pe
t
j I t� �

QD
Z ðE½P

e
t jI t�;E½ZtjI t�Þ

2s2~Z þ s2~�
½QS

PðE½P
e
t jI t�Þ �QD

P ðE½P
e
t jI t�;E½ZtjI t�Þ�

2
. (13)

It follows that Pt
e will exhibit volatility clustering as a result of the drifting value

of E[Zt|It] whenever QD
ZZ( � , � ) or QD

PZ( � , � ) is nonzero, and exhibit volatility
clustering as a result of its own drifting conditional mean E½Pe

t jI t� whenever
QD

PZ( � , � ), QS
PP( � , � ) or QD

PP( � , � ) is nonzero.
P

0 

excess demand excess demand

P

0 
Q Q

Fig. 1. Induced volatility clustering in Pe
t for linear excess demand curve with drifting slope.

excess demand

excess demand

P 

0 
Q 

Fig. 2. Induced volatility clustering in Pe
t for nonlinear excess demand curve with horizontal drift.
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Figs. 1 and 2 illustrate these two types of effects in terms of the market excess
demand function QDðPt;ZtÞ þ ~�t �QSðPtÞ. In each case, the additive i.i.d. shocks ~�t
imply homoskedastic horizontal shocks in the excess demand curve, as indicated by
the equal-length horizontal arrows. Fig. 1 illustrates a pure drifting coefficient effect,
where QD

PP( � , � ) and QS
PP( � , � ) are both zero so that the excess demand curve is

always linear in P, but QD
PZ( � , � ) is nonzero so that drift in Zt leads to drift in the

slope of the excess demand curve, and hence to volatility clustering in Pe
t . Fig. 2

illustrates a pure drifting implicit input effect, where QD
PZ( � , � ) is zero so that drift in

Zt leads to a pure horizontal translation of the excess demand curve, but QD
PP( � , � )

and/or QS
PP( � ) are nonzero, so the excess demand curve is nonlinear in P, which

again leads to volatility clustering in Pe
t .

2.2. Example: return on a financial asset

Consider an asset whose cash value in its terminal period T will be given by a
nonlinear function pð�1 þ � � � þ �T Þ of the accumulation of a sequence of zero-mean
i.i.d. ‘‘news’’ variables f~�tgt¼1;2;...;T , which are realized and observed one period at a
time. Define Zt ¼

Pt�1
t¼1�t as the news available at the start of period t, that is, before

the realization of ~�t. Assume that the discount rate is zero, and that the price of the
asset at the end of period t (that is, after the realization of ~�t) is given by the
expectation of its terminal value, conditional on the news to date:

PtðZt þ �tÞ ¼ E~�tþ1;...;~�T
½pðZt þ �t þ ~�tþ1 þ � � � þ ~�T Þ�. (14)

Since this also implies

Pt�1ðZtÞ ¼ E~�t;...;~�T ½pðZt þ ~�t þ ~�tþ1 þ � � � þ ~�T Þ�, (15)

the asset’s one-period gross rate of return viewed from the start of period t is given
by the random variable

RtðZt; ~�tÞ ¼
PtðZt þ ~�tÞ

Pt�1ðZtÞ
¼

E~�tþ1;...;~�T ½pðZt þ ~�t þ ~�tþ1 þ � � � þ ~�T Þ�

E~�t ;...;~�T
½pðZt þ ~�t þ ~�tþ1 þ � � � þ ~�T Þ�

. (16)

Note that while ~�t appears as an actual random variable in the left and middle
terms of (16) as well as in the numerator of the right term, it is expected out in the
denominator of the right term. By the Law of Iterated Expectations and the fact that
Zt is a sufficient statistic for the information set It at the start of period t, the
conditional mean of the gross return is given by

E½RtðZt; ~�tÞjI t� ¼ E~�t
½RtðZt; ~�tÞ� ¼

E~�t;~�tþ1;...;~�T
½pðZt þ ~�t þ ~�tþ1 þ � � � þ ~�T Þ�

E~�t;...;~�T ½pðZt þ ~�t þ ~�tþ1 þ � � � þ ~�T Þ�
¼ 1

(17)

which comes as no surprise, given our assumptions of expectation-based pricing and
zero discounting. Expanding about ~�t ¼ 0, the conditional variance of the return is
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approximated by

var½RtðZt; ~�tÞjI t� ¼ var½RtðZt; ~�tÞ� �
½E~�tþ1;...;~�T

½p0ðZt þ ~�tþ1 þ � � � þ ~�T Þ��
2s2~�

½E~�t;...;~�T ½pðZt þ ~�t þ ~�tþ1 þ . . .þ ~�T Þ��
2
.

(18)

In spite of the homoskedasticity and serial independence of the news variables
f~�tgt¼1;2;...;T , the conditional variance of the gross return (as well as the conditional
variance of Pt itself) is seen to drift with the drift in Zt, through both the numerator
and denominator of (18).

Although (16) is similar to the general specification (8) in that it also depends on
both a homoskedastic drift variable Zt and an i.i.d. shock ~�t, it differs from (8) in two
respects. The first difference is that the drift variable Zt in RtðZt; ~�tÞ is not the
accumulation of separate variables f~Ztg but rather, the accumulation of past values of
~�t itself. But since ~�t is independent of its past values this difference is not essential,
and like (8), the specification (16) exhibits volatility clustering from both a drifting
input effect and a drifting coefficient effect: Rt is seen to exhibit volatility clustering
from a drifting input effect through its numerator PtðZt þ ~�tÞ, and since this
numerator is divided by the drifting predetermined variable Pt�1(Zt), Rt also exhibits
induced volatility due to the drifting coefficient 1/Pt–1(Zt). These two effects
correspond to Zt’s influence on the conditional variance formula through the
numerator and denominator of (18), respectively.

A second difference between (16) and (8), which may seem to contradict our goal
of obtaining volatility clustering from i.i.d. shocks and a time-invariant structure, is
that (16) involves a time-dependent return formula Rt( � , � ), so it is no surprise that it
would generate a time-dependent unconditional variance path var[R1|I0],y,
var[RT|I0]. Two remarks are in order: First, the formulas R1( � , � ),y,RT( � , � ) are
not structural, but rather, are derived from the one true structural formula of the
model, namely the terminal cash value function p( � ), via the pricing formula (14).
Second, it is important to note that even if a model does imply a time-dependent
unconditional variance path, it may or may not exhibit volatility clustering.
Volatility clustering is not defined as a time-dependent unconditional variance path

var[Rt|I0], but rather, as serially correlated departures in the conditional variance

var[Rt|It] from its predicted path E[var[Rt|It]|I0].
3 In other words, it is the persistent

drift in the conditional variance var[Rt|It] about its (constant or nonconstant)
predicted path E[var[Rt|It]|I0] that constitutes volatility clustering in Rt, and which is
implied by the dependence of var[Rt|It] upon the drifting variable Zt in (18).

By assuming an infinite horizon, we can construct an asset pricing model that
exhibits both induced volatility clustering and time-invariant pricing and return
functions P( � ,y, � ) and R( � ,y, � ): Consider an orchard with overlapping cohorts
of trees, where each tree yields fruit for L+1 periods, and the productivity (net with
respect to some average) of trees planted in period t is ~�t. Because of scale effects in
3Thus, even though a pure random walk Zt ¼ St
t¼1 ~Zt has a time-dependent unconditional variance path

var½ZtjI0� � ts2~Z, it exhibits no volatility clustering, since its conditional variance var[Zt|It] never departs

from its predicted value E½var½ZtjIt�jI0� ¼ s2~Z.
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processing and marketing, total profits in period t is given by a nonlinear function
pð�t2L þ � � � þ �tÞ, so the market value of the firm at the end of period t is given by
the discounted conditional expectation

Pð�t�L; . . . ; �tÞ ¼ pð�t�L þ � � � þ �tÞ

þ dE~�tþ1
½pð�t�Lþ1 þ � � � þ �t þ ~�tþ1Þ�

þ d2E~�tþ1;~�tþ2 ½pð�t�Lþ2 þ � � � þ �t þ ~�tþ1 þ ~�tþ2Þ�

..

.

þ dLE~�tþ1;~�tþ2;...;~�tþL
½pð�t þ ~�tþ1 þ ~�tþ2 þ � � � þ ~�tþLÞ�

þ
X1

t¼Lþ1

dtE~�tþt�L ;...;~�tþt ½pð~�tþt�L þ ~�tþt�Lþ1 þ � � � þ ~�tþtÞ�. ð19Þ

Since the productivity shocks ~�t are i.i.d., the pricing function P( � ,y, � ) is time-
invariant, and the one-period gross rate of return viewed from the start of period t,
namely

Rð�t�L�1; . . . ; �t�1; ~�tÞ ¼
Pð�t�L; . . . ; �t�1; ~�tÞ

Pð�t�L�1; . . . ; �t�1Þ
(20)

is similarly time-invariant. Since nonlinearity of pð�Þ implies that
qPð�t�L; . . . ; �t�1; �tÞ=q�tj�t¼0 will drift with each of the L moving sums �t2L þ � � � þ

�t21; �t2Lþ1 þ � � � þ �t21; . . . ; �t22 þ �t21 and �t21 (which determine the predictable
component of profits in the current and each of the next L–1 periods), and
1=Pð�t2L21; . . . ; �t21Þ will drift with the moving sums �t2L21 þ � � � þ �t21; �t2L þ � � � þ

�t21; . . . ; �t22 þ �t21 and �t21, we have that Rt again exhibits volatility clustering due
to both drifting input effects in its numerator and a drifting coefficient effect from its
denominator.
2.3. Induced covariance clustering and joint volatility clustering

Give a pair of variables {Y1t}t ¼ 1,2,y and {Y2t}t ¼ 1,2,y, we can ask the following
two questions about their joint behavior:4
1.
4

‘‘cl

han

vol
Do Y1t and Y2t exhibit covariance clustering—that is, does their conditional
covariance cov[Y1t,Y2t|It] exhibit drift in the sense of serially correlated departures
about its predicted path?
2.
 Do Y1t and Y2t exhibit joint volatility clustering—that is, do their conditional
variances var[Y1t|It] and var[Y2t|It] exhibit contemporaneously correlated
departures from their predicted paths?
We avoid the term ‘‘covolatility clustering’’ on the grounds that it is ambiguous: if it is taken to mean

ustering of covolatility’’ then it corresponds to what we term ‘‘covariance clustering.’’ On the other

d, if it is taken to mean ‘‘correlation of volatility clustering’’ then it corresponds to what we term ‘‘joint

atility clustering.’’
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To see that either of these phenomena can occur without the other, let f ~ogt¼1;2;...,
f~�tgt¼1;2;... and f~Ztgt¼1;2;... be zero-mean, unit-variance i.i.d. shock variables, and Zt be
a drift variable with values in [0,1] and which is in the information set It. Since the
pair of variables Y �1t ¼

ffiffiffiffiffi
Zt

p
~ot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zt

p
~�t and Y �2t ¼

ffiffiffiffiffi
Zt

p
~ot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zt

p
~Zt satisfy

E½Y �1tjI t� ¼ E½Y �2tjI t� ¼ 0, cov½Y �1t;Y
�
2tjI t� ¼ Zt and var½Y �1tjI t� ¼ var½Y �2tjI t� ¼ 1,

they exhibit covariance clustering, but neither joint nor individual volatility
clustering. Conversely, since the variables Y ��1t ¼ Zt~�t and Y ��2t ¼ Zt ~Zt satisfy
E½Y ��1t jI t� ¼ E½Y ��2t jI t� ¼ 0, var½Y ��1t jI t� ¼ var½Y ��2t jI t� ¼ Z2

t and cov½Y ��1t ;Y
��
2t jI t� ¼ 0,

they exhibit both individual and joint volatility clustering, but not covariance
clustering.

As with volatility clustering, both covariance clustering and joint volatility
clustering can arise in structural systems which are time-invariant and whose shocks
are all zero-mean i.i.d. In the supply-demand example of Section 2, since the market
clearing quantity Qe

t is a deterministic function QS( � ) of market clearing price Pe
t ,

Eq. (12) implies that for small departures of Zt from its conditional mean E[Zt|It]
and small values of ~�t about its mean of 0, we have

dQe
t ¼ QS

PðE½P
e
t jI t�Þ

QD
Z ðE½P

e
t jI t�;E½ZtjI t�ÞdZt þ d~�t

QS
PðE½P

e
t jI t�Þ �QD

P ðE½P
e
t jI t�;E½ZtjI t�Þ

. (21)

For small values of s2~Z and s2~� the conditional variance of Qe
t and conditional

covariance of Pe
t and Qe

t can be approximated by

var½Qe
t
j I t� � QS

PðE½P
e
t jI t�Þ

2
QD

Z ðE½P
e
t jI t�;E½ZtjI t�Þ

2s2~Z þ s2~�
½QS

PðE½P
e
t jI t�Þ �QD

P ðE½P
e
t jI t�;E½ZtjI t�Þ�

2
, (22)

cov½Pe
t ;Q

e
t
j I t� � QS

PðE½P
e
t jI t�Þ

QD
Z ðE½P

e
t jI t�;E½ZtjI t�Þ

2s2~Z þ s2~�
½QS

PðE½P
e
t jI t�Þ �QD

P ðE½P
e
t jI t�;E½ZtjI t�Þ�

2
. (23)

Since drift in E[Zt|It] affects var[Pt
e|It], var[Qt

e|It] and cov[Pt
e,Qt

e|It], Pt
e and Qt

e

will generally exhibit both covariance clustering and joint volatility clustering. Since

the partial derivative QD
P ( � , � ) is negative and the derivative QS

P( � ) is positive, the

drifting conditional covariance cov[Pt
e,Qt

e|It] is always positive.
5 However, whether

the conditional variances var[Pt
e|It] and var[Qt

e|It] tend to drift in the same direction
as each other or in opposite directions will depend on the signs and magnitudes of
the second-order derivatives of the demand and supply functions. The following

figures illustrate this for a simple demand function of the form QDðPtÞ þ Zt þ ~�t. In
Fig. 3, where demand is convex in price and supply is linear, var[Pt

e|It] and var[Qt
e|It]

both unambiguously rise/fall as the demand curve drifts to the right/left. In Fig. 4,
where demand is convex in price and supply is concave, var[Pt

e|It] unambiguously
rises/falls as demand drifts to the right/left, but the behavior of var[Qt

e|It] will

depend on the exact magnitudes of QS
PP( � ) and QD

PP( � , � ), via (22).
5This is natural since we assume a drifting stochastic demand curve and a deterministic supply curve.
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2.4. Other examples

We are not the first to present structural models that generate volatility clustering.
Other researchers who have done so include:
�

6

Brock and LeBaron (1996), who develop an asymmetric-information, adaptive-
beliefs model of asset pricing and volume, in which volatility clustering arises
from traders experimenting with different belief systems based on past profits and
expected future profits.6
�
 Evans and Ramey (1995), who develop a boundedly rational, adaptive-learning
model of asset pricing, in which underlying regime switches trigger expectations
adjustments that in turn lead to volatility clustering.

�
 Cabrales and Hoshi (1996), who develop a heterogeneous-beliefs asset pricing

model in which changes in the distribution of wealth over time lead to volatility
clustering, as well as a separate model which generates the same effect from
heterogeneous risk preferences.
See also Brock (1987) on some related theoretical and econometric issues.
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�
 Den Haan and Spear (1998), who develop a heterogeneous-agent, incomplete
markets model of interest rates, in which financial frictions lead to volatility
clustering which is correlated with both the borrowing/lending rate spread and the
business cycle.

�
 de Fontnouvelle (2000), who develops a costly information model of asset trading,

in which agents’ time-varying information acquisition strategies serves to generate
volatility clustering in both price and trading volume.

�
 Timmermann (2001), who develops an imperfect-information model of asset

pricing, in which large revisions in agents’ parameter estimates in the periods
following each structural break leads to volatility clustering in prices.

Although each of these models was designed to generate volatility clustering as
one its implications, they differ from our own analysis and examples both in their
greater levels of specificity (each being directed at a particular empirical
phenomenon) and their greater levels of complexity (involving asymmetric
information, rational or boundedly rational beliefs and learning, or heterogeneous
agents). The purpose of our own analysis and examples is to identify the general
sources of induced volatility clustering—namely drifting coefficient or drifting input
effects—and show how induced volatility clustering can emerge in even the simplest
of nonlinear supply-demand systems, or homogeneous-agent/rational expectations
asset pricing models.
3. Structural attribution of observed serial correlation

If the residuals of a regression equation Y t ¼ aþ bX t þ ut are found to exhibit
serial correlation of the MA(1) form ut ¼ ~�t þ g~�t�1 for some g and i.i.d. series
f~�tgt¼1;2;..., then it is possible to fully ‘‘structurally attribute’’ this serial correlation by
simply expressing the complete model as

Y t ¼ aþ bX t þ ~�t þ g~�t�1, (24)

that is, by assuming that the underlying shock variables are i.i.d. rather than serially
correlated, and that each shock variable ~�t not only affects Yt but also has structural
effect g upon Yt+1.

If the serial correlation in Y t ¼ aþ bX t þ ut is instead found to take the AR(1)
form ut ¼ rut�1 þ ~�t for some r 2 ½0; 1Þ and i.i.d. f~�tgt¼1;2;..., then it can be fully
structurally attributed by expressing the complete model in either of the equivalent
forms

Y t ¼ aþ bX t þ
X1
t¼0

rt~�t�t, (25)

Y t ¼ ð1� rÞaþ bX t þ rY t�1 � rbX t�1 þ ~�t, (25)0

where the first form posits that each of the i.i.d. shock variables ~�t affects Yt and also
has geometrically diminishing structural effects r, r2,y on its subsequent values
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Y tþ1;Y tþ2; . . ., and the second form posits that Yt and Xt both directly structurally
affect Yt+1. Since each of the models (24), (25), (25)0 involves only time-invariant
parameters and zero-mean i.i.d. shocks f~�tgt¼1;2;... , we say that each of these models
serves to fully structurally attribute the observed serial correlation in Yt. Using
standard techniques, most ARMA processes for the residual term ut can be treated in
a similar manner.7 Although these i.i.d. shock structural models are of course
observationally equivalent to the form Y t ¼ aþ bX t þ ut with its specified form of
serial correlation, there is a sense in which they can be said to constitute a more
complete explanation of the observed statistical properties of the variable Yt.
4. Structural attribution of observed volatility clustering

If a variable Yt or the residuals in a regression equation for Yt are observed to
exhibit volatility clustering, then in many cases it will be similarly possible to
structurally attribute this phenomenon by means of a time-invariant structural
model with zero-mean i.i.d. shocks. As with the structural attribution of observed
serial correlation, the specific form of the structural model will depend upon the
specific form of the observed volatility clustering, such as whether (and how) the
conditional variance of ut is related to Yt, related to any explanatory variables Xt,
related to other observable variables Zt, or related to its own past values
ut21; ut22; . . . Such dependence is useful, since it implies that the statistical volatility
clustering properties of a variable can provide hints in the search for an underlying
structural or causal model of that variable. We consider the following examples:

4.1. Simple autoregressive volatility

If the zero-mean residuals in a regression equation Y t ¼ aþ bX t þ ut are found to
exhibit volatility clustering of the simple form varðutjI tÞ ¼ ru2

t21, they can be
generated by a process of the form

ut ¼ ~�t

Yt�1
t¼1

~�tj j ¼ ~�t ~�t�1

Yt�2
t¼1

~�tj j

�����
����� ¼ ~�t ut�1j j (26)

for zero-mean i.i.d. f~�tgt¼1;2;... with varð~�tÞ ¼ r, so that by defining Zt ¼ lnðjutjÞ, this
form of volatility clustering can be fully structurally attributed by an i.i.d. shock,
time-invariant system of the form

Y t ¼ aþ bX t þ expðZt�1Þ~�t,

Zt ¼ Zt�1 þ lnðj~�tjÞ,

f~�tgt¼1;2;... zero-mean i:i:d: with varð~�tÞ ¼ r, ð27Þ

where Yt is seen to exhibit induced volatility clustering via the drifting coefficient
expðZt21Þ, for the conditionally homoskedastic drift variable Zt.
7See, for example, Sargan (1980).
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4.2. ARCH

More generally, if the residuals in Y t ¼ aþ bX t þ ut are found to exhibit volatility
clustering of the standard ARCH (autoregressive conditional heteroskedasticity) form
varðutjI tÞ ¼ cþ ru2

t21, they can be generated by a process of the form8

ut ¼ ~�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ ðc=rÞ

Xt�1

s¼1

Yt�1

t¼s
~�2t

r

¼ ~�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ ðc=rÞ~�2t�1 þ ðc=rÞ~�

2
t�1

Xt�2

s¼1

Yt�2

t¼s
~�2t

h ir

¼ ~�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ ~�2t�1 ðc=rÞ þ ðc=rÞ

Xt�2

s¼1

Yt�2

t¼s
~�2t

h ir

¼ ~�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ u2

t�1

q
ð28Þ

for zero-mean i.i.d. f~�tgt¼1;2;... with varð~�tÞ ¼ r, so that by the substitution Zt ¼ u2
t ,

this form of volatility clustering can be fully structurally attributed by an i.i.d. shock,
time-invariant system of the form

Y t ¼ aþ bX t þ ~�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ Zt�1

p
,

Zt ¼ ~�
2
t ½ðc=rÞ þ Zt�1�,

f~�tgt¼1;2;... zero-mean i:i:d: with varð~�tÞ ¼ r, ð29Þ

where Yt exhibits induced volatility clustering via the drifting coefficientffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc=rÞ þ Zt�1

p
, for a variable Zt that is subject to both homoskedastic additive

and homoskedastic multiplicative drift.

4.3. Long memory processes

A different generalization of the simple autoregressive volatility form is if the
residuals in Y t ¼ aþ bX t þ ut are found to exhibit volatility clustering of the long

memory process form varðutjI tÞ ¼ jut21j
2r. In such a case, they can be generated by a

process of the form

ut ¼ ~�t

Yt�1
t¼1

j~�tj
rðt�tÞ ¼ ~�t j~�t�1j

Yt�2
t¼1

j~�tj
rðt�1�tÞ

" #r
¼ ~�tjut�1j

r (30)

for zero-mean i.i.d. f~�tgt¼1;2;... with varð~�tÞ ¼ 1, so that by the substitution
Zt ¼ lnðjutjÞ, this form of volatility clustering can be fully structurally attributed
by an i.i.d. shock, time-invariant system of the form

Y t ¼ aþ bX t þ expðrZt�1Þ~�t,

Zt ¼ rZt�1 þ lnðj~�tjÞ,

f~�tgt¼1;2;... zero-mean i:i:d: with varð~�tÞ ¼ 1, ð31Þ
8The following form can be equivalently written as ut ¼ sgnð~�tÞ ðc=rÞSt
s¼1P

t
t¼s~�

2
t

� �1=2
.
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where Yt exhibits induced volatility clustering via the drifting coefficient expðrZt21Þ,
for the conditionally homoskedastic autoregressive drift variable Zt.

4.4. Factor-dependent volatility

If the predicted mean of Yt conditional upon some univariate variable Xt, and its
predicted or observed variance, are found to be linked by relationships of the form

E½Y tjX t� � GðX tÞ; var½Y tjX t� � gG0ðX tÞ
2, (32)

then Yt can be approximately structurally attributed by the time-invariant, i.i.d.
shock, drifting-input form

Y t ¼ GðX t þ ~�tÞ; E½~�t� ¼ 0; varð~�tÞ ¼ g, (33)

where the attribution is approximate since the structural form (33) only
approximately implies the conditional mean and variance formulas (32).

In other cases, however, such structural attribution can be exact. For example, if
the conditional mean and variance relationships should be found to take the separate
quadratic forms

E½Y tjX t� ¼ aþ bX t þ gX 2
t ; var½Y tjX t� ¼ k1 þ k2X t þ k3X 2

t , (34)

then we can obtain exact structural attribution by the drifting-input structural form
Y t � GðX t þ ~�tÞ, for the quadratic function

GðX Þ ¼ a� k3=ð4gÞ þ bX þ gX 2 (35)

and zero-mean i.i.d. shocks f~�tgt¼1;2;... which satisfy

s2~� ¼ E½~�2t � ¼ k3=ð4g2Þ

E½~�3t � ¼ k2=ð4g2Þ � bk3=ð4g3Þ

E½~�4t � ¼ k1

�
g2 � bk2=ð2g3Þ þ b2k3=ð4g4Þ þ k2

3=ð16g
4Þ. ð36Þ

Observe that in contrast to the functional dependence between the conditional
mean and variance relationships in (32), the coefficients a, b and g in the conditional
mean function and coefficients k1, k2 and k3 in the conditional variance function of
(34) bear no necessary linkage to each other beyond the weak inequalities implied by
the nonnegativity of E½~�2t � and E½~�4t � in (36).

4.5. Covariance clustering

If the residuals in the pair of regression equations Y 1t ¼ a1 þ b1X 1t þ u1t and
Y 2t ¼ a2 þ b2X 2t þ u2t are found to exhibit simple autoregressive covariance
clustering of the form cov½u1t; u2tjI t� ¼ gu1;t21u2;t21, but no individual or joint
volatility clustering, so that var½u1tjI t� ¼ s2u1 and var½u2tjI t� ¼ s2u2 , they can be
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generated by a process of the form

u1t ¼ su1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgu1;t�1u2;t�1Þ=ðsu1su2 Þ

p
~ot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgu1;t�1u2;t�1Þ=ðsu1su2 Þ

p
~�t

h i
,

u2t ¼ su2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgu1;t�1u2;t�1Þ=ðsu1su2 Þ

p
~ot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgu1;t�1u2;t�1Þ=ðsu1su2 Þ

p
~Zt

h i
ð37Þ

for the zero-mean, unit-variance, i.i.d. shocks f ~otgt¼1;2;..., f~�tgt¼1;2;... and f~Ztgt¼1;2;....
Defining Zt ¼ ðgu1tu2tÞ=ðsu1su2Þ, we can fully structurally attribute this process by the
i.i.d. shock, time-invariant system

Y 1t ¼ a1 þ b1X 1t þ su1

ffiffiffiffiffiffiffiffiffiffi
Zt�1

p
~ot þ su1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zt�1

p
~�t,

Y 2t ¼ a2 þ b2X 2t þ su2

ffiffiffiffiffiffiffiffiffiffi
Zt�1

p
~ot þ su2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zt�1

p
~Zt,

Zt ¼ g Zt�1 ~o2
t þ ð1� Zt�1Þ~�t ~Zt þ

ffiffiffiffiffiffiffiffiffiffi
Zt�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zt�1

p
~otð~�t þ ~ZtÞ

h i
,

f ~otgt¼1;2;...; f~�tgt¼1;2;...; f~Ztgt¼1;2;... zero-mean; unit variance; i:i:d: ð38Þ
5. Modeling and forecasting implications

The fact that we can construct structural models which generate different specific
forms of observed volatility clustering in a variable or variables does not imply that
the causal variables and causal relationships in these models necessarily exist.
Rather, it is our hope that with a more complete understanding of the relationship
between specific features of structural models and specific forms of volatility
clustering, increasingly sophisticated statistical specifications of observed volatility
clustering in a variable or variables can be used to suggest possible structural
explanations of those variables, which can then be formulated and tested in the
standard manners.

When such structural explanations can be satisfactorily established, they can in
turn serve to help better predict volatility. Although the examples of structural
attribution in the previous section all involved time-invariant forms, the parameters
of structural economic models often change in predictable ways—for example, as a
result of announced changes in tax rates or other policy variables. Such predicted
structural changes will imply well-defined predicted changes (‘‘breaks’’) in the
volatility clustering properties of their key variables, which could not have been
predicted from any statistical volatility clustering specification based solely on
current and past values of those variables.
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