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Abstract

When forecasts of the future value of some variable, or the probability of some event,

are used for purposes of ex ante planning or decision making, then the preferences, op-

portunities and constraints of the decision maker will all enter into the ex post evaluation

of a forecast, and the ex post comparison of alternative forecasts. After a presenting a

brief review of early work in the area of forecasting and decision theory, this chapter

formally examines the manner in which the features of an agent’s decision problem

combine to generate an appropriate decision-based loss function for that agent’s use

in forecast evaluation. Decision-based loss functions are shown to exhibit certain nec-

essary properties, and the relationship between the functional form of a decision-based

loss function and the functional form of the agent’s underlying utility function is charac-

terized. In particular, the standard squared-error loss function is shown to imply highly

restrictive and not particularly realistic properties on underlying preferences, which are

not justified by the use of a standard local quadratic approximation. A class of more

realistic loss functions (“location-dependent loss functions”) is proposed.

Keywords

forecasting, loss functions, decision theory, decision-based loss functions

JEL classification: C440, C530
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Preface

This chapter has two sections. Section 1 presents a fairly brief history of the interaction

of forecasting and decision theory, and Section 2 presents some more recent results.

1. History of the field

1.1. Introduction

A decision maker (either a private agent or a public policy maker) must inevitably con-

sider the future, and this requires forecasts of certain important variables. There also

exist forecasters – such as scientists or statisticians – who may or may not be operating

independently of a decision maker. In the classical situation, forecasts are produced by

a single forecaster, and there are several potential users, namely the various decision

makers. In other situations, each decision maker may have several different forecasts to

choose between.

A decision maker will typically have a payoff or utility function U(x, α), which de-

pends upon some uncertain variable or vector x which will be realized and observed at

a future time T , as well as some decision variable or vector α which must be chosen

out of a set A at some earlier time t < T . The decision maker can base their choice

of α upon a current scalar forecast (a “point forecast”) xF of the variable x, and make

the choice α(xF ) ≡ arg maxα∈AU(xF , α). Given the realized value xR , the decision

maker’s ex post utility U(xR, α(xF )) can be compared with the maximum possible util-

ity they could have attained, namely U(xR, α(xR)). This shortfall can be averaged over

a number of such situations, to obtain the decision maker’s average loss in terms of

foregone payoff or utility. If one is forecasting in a stochastic environment, perfect fore-

casting will not be possible and this average long-term loss will be strictly positive. In

a deterministic world, it could be zero.

Given some measure of the loss arising from an imperfect forecast, different forecast-

ing methods can be compared, or different combinations selected.

In his 1961 book Economic Forecasts and Policy, Henri Theil outlined many ver-

sions of the above type of situation, but paid more attention to the control activities of

the policy maker. He returned to these topics in his 1971 volume Applied Economic
Forecasting, particularly in the general discussion of Chapter 1 and the mention of loss

functions in Chapter 2. These two books cover a wide variety of topics in both theory

and applications, including discussions of certainty equivalence, interval and distribu-

tional forecasts, and non-quadratic loss functions. This emphasis on the links between

decision makers and forecasters was not emphasized by other writers for at least an-

other quarter of a century, which shows how farsighted Theil could be. An exception is

an early contribution by White (1966).

Another major development was Bayesian decision analysis, with important contri-

butions by DeGroot (1970) and Berger (1985), and later by West and Harrison (1989,
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1997). Early in their book, on page 14, West and Harrison state “A statistician, econo-

mist or management scientist usually looks at a decision as comprising a forecast or

belief, and a utility, or reward, function”. Denote Y as the outcome of a future random

quantity which is “conditional on your decision α expressed through a forward or prob-

ability function P(Y |α). A reward function u(Y, α) expresses your gain or loss if Y

happens when you take decision α”. In such a case, the expected reward is

(1)r(α) =
∫

u(Y, α) dP(Y |α)

and the optimal decision is taken to be the one that maximizes this expected reward.

The parallel with the “expected utility” literature is clear.

The book continues by discussing a dynamic linear model (denoted DLM) using a

state-space formulation. There are clear similarities with the Kalman filtering approach,

but the development is quite different. Although West and Harrison continue to develop

the “Bayesian maximum reward” approach, according to their index the words “deci-

sion” and “utility” are only used on page 14, as mentioned above. Although certainly

important in Bayesian circles, it was less influential elsewhere. This also holds for the

large body of work known as “statistical decision theory”, which is largely Bayesian.

The later years of the Twentieth Century produced a flurry of work, published around

the year 2000. Chamberlain (2000) was concerned with the general topic of econo-

metrics and decision theory – in particular, with the question of how econometrics can

influence decisions under uncertainty – which leads to considerations of distributional

forecasts or “predictive distributions”. Naturally, one needs a criterion to evaluate pro-

cedures for constructing predictive distributions, and Chamberlain chose to use risk

robustness and to minimize regret risk. To construct predictive distributions, Bayes

methods were used based on parametric models. One application considered an indi-

vidual trying to forecast their future earnings using their personal earnings history and

data on the earnings trajectories of others.

1.2. The Cambridge papers

Three papers from the Department of Economics at the University of Cambridge moved

the discussion forward. The first, by Granger and Pesaran (2000a), first appeared as a

working paper in 1996. The second, also by Granger and Pesaran (2000b), appeared

as a working paper in 1999. The third, by Pesaran and Skouras (2002), appeared as a

working paper in 2000.

Granger and Pesaran (2000a) review the classic case in which there are two states of

the world, which we here call “good” and “bad” for convenience. A forecaster provides

a probability forecast π̂ (resp. 1−π̂) that the good (resp. bad) state will occur. A decision

maker can decide whether or not to take some action on the basis of this forecast, and

a completely general payoff or profit function is allowed. The notation is illustrated in

Table 1. The Yij ’s are the utility or profit payoffs under each state and action, net of any

costs of the action. A simple example of states is that a road becoming icy and dangerous
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Table 1

State

Action Good Bad

Yes Y11 Y12
No Y21 Y22

is the bad state, whereas the road staying clear is the good state. The potential action

could be to add sand to the road. If π̂ is the forecast probability of the good state, then

the action should be undertaken if

(2)
π̂

1 − π̂
>

Y22 − Y12

Y11 − Y21
.

This case of two states with predicted probabilities of π̂ and 1 − π̂ is the simplest possi-

ble example of a predictive distribution. An alternative type of forecast, which might be

called an “event forecast”, consists of the forecaster simply announcing the event that is

judged to have the highest probability. Granger and Pesaran (2000a) show that using an

event forecast will be suboptimal compared to using a predictive distribution. Although

the above example is a very simple case, the advantages of using an economic cost func-

tion along with a decision-theoretic approach, rather than some statistical measure such

as least squares, are clearly illustrated.

Granger and Pesaran (2000b) continue their consideration of this type of model,

but turn to loss functions suggested for the evaluation of the meteorological forecasts.

A well-known example is the Kuipers Score (KS) defined by

(3)KS = H − F

where H is the fraction (over time) of bad events that were correctly forecast to occur,

and F is the fraction of good events that had been incorrectly forecast to have come

out bad (sometimes termed the “false alarm rate”). Random forecasts would produce

an average KS value of zero. Although this score would seem to be both useful and

interpretable, it turns out to have some undesirable properties. The first is that it cannot

be defined for a one-shot case, since regardless of the prediction and regardless of the

realized event, one of the fractions H or F must take the undefined form 0/0. A gener-

alization of this undesirable property is that the Kuipers Score cannot be guaranteed to

be well-defined for any prespecified sample size (either time series or cross-sectional),

since for any sample size n, the score is similarly undefined whenever all the realized

events are good, or all the realized events are bad.

Although the above properties would appear serious from a theoretical point of view,

one might argue that any practical application would involve a prediction history where

incorrect forecasts of both types had occurred, so that both H and F would be well-

defined. But even in that case, another undesirable property of the Kuipers Score can

manifest itself, namely that the neither the score itself, nor its ranking of alternative



86 C.W.J. Granger and M.J. Machina

Table 2

Year Realized

event

A’s

forecast

B’s

forecast

A’s 5-year

score

B’s 5-year

score

A’s 10-year

score

B’s 5-year

score

1 good good good
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

HA
1−5 = 1

FA
1−5 = 3

4

KSA
1−5 = 1

4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

HB
1−5 = 0

FB
1−5 = 1

4

KSB
1−5 = − 1

4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

HA
1−10 = 2

5

FA
1−10 = 3

5

KSA
1−10 = − 1

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

HB
1−10 = 3

5

FB
1−10 = 2

5

KSB
1−10 = 1

5

2 good bad good

3 good bad good

4 good bad bad

5 bad bad good

6 bad bad bad
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

HA
5−10 = 1

4

FA
5−10 = 0

KSA
5−10 = 1

4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

HB
5−10 = 3

4

FB
5−10 = 1

KSB
5−10 = − 1

4

7 bad good bad

8 bad good bad

9 bad good good

10 good good bad

forecasters, will exhibit the natural uniform dominance property with respect to com-

bining or partitioning sample populations. We illustrate this with the following example,

where a 10-element sample is partitioned into two 5-element subsamples, and where the

history of two forecasters, A and B, are as given in Table 2. For this data, forecaster A

is seen to have a higher Kuipers score than forecaster B for the first five-year period,

and also for the second five-year period, but A has a lower Kuipers score than B for the

whole decade – a property which is clearly undesirable, whether or not our evaluation

is based on an underlying utility function. The intuition behind this occurrence is that

the two components H and F of the Kuipers score are given equal weight in the for-

mula KS = H − F even though the number of data points they refer to (the number

of periods with realized bad events versus the number of periods with realized good

events) needn’t be equal, and the fraction of bad versus good events in each of two sub-

periods can be vastly different from the fraction over the combined period. Researchers

interested in applying this type of evaluation measure to situations involving the ag-

gregation/disaggregation of time periods, or time periods of different lengths, would be

better off with the simpler measure defined by the overall fraction of events (be they

good or bad) that were correctly forecast.

Granger and Pesaran (2000b) also examine the relationship between other statistical

measures of forecast accuracy and tests of stock market timing, and with a detailed

application to stock market data. Models for stock market returns have emphasized

expected risk-adjusted returns rather than least-squares fits – that is, an economic rather

than a statistical measure of quality of the model.

Pesaran and Skouras (2002) is a survey paper, starting with the above types of re-

sults and then extending them to predictive distributions, with a particular emphasis on

the role of decision-based forecast evaluation. The paper obtains closed-form results

for a variety of random specifications and cost or utility functions, such as Gaussian

distributions combined with negative exponential utility. Attention is given to a general
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survey of the use of cost functions with predictive distributions, with mention of the

possible use of scoring rules, as well as various measures taken from meteorology. See

also Elliott and Lieli (2005).

Although many of the above results are well known in the Bayesian decision theory

literature, they were less known in the forecasting area, where the use of the whole

distribution rather than just the mean, and an economic cost function linked with a

decision maker, were not usually emphasized.

1.3. Forecasting versus statistical hypothesis testing and estimation

Although the discussion of this chapter is in terms of forecasting some yet-to-be-

realized random variable, it will be clear to readers of the literature that most of our

analysis and results also apply to the statistical problem of testing a hypothesis whose

truth value is already determined (though not yet known), or to the statistical problem of

estimating some parameter whose numerical value is also already determined (though

not yet observed, or not directly observable). The case of hypothesis testing will cor-

respond to the forecasting of binary events as illustrated in the above table, and that

of numerical parameter estimation will correspond to that of predicting a real-valued

variable, as examined in Section 2 below.

2. Forecasting with decision-based loss functions

2.1. Background

In practice, statistical forecasts are typically produced by one group of agents (“fore-

casters”) and consumed by a different group (“clients”), and the procedures and desires

of the two groups typically do not interact. After the fact, alternative forecasts or fore-

cast methods are typically evaluated by means of statistical loss functions, which are

often chosen primarily on grounds of statistical convenience, with little or no reference

to the particular goals or preferences of the client.

But whereas statistical science is like any other science in seeking to conduct a

“search for truth” that is uninfluenced by the particular interests of the end user, sta-
tistical decisions are like any other decision in that they should be driven by the goals

and preferences of the particular decision maker. Thus, if one forecasting method has

a lower bias but higher average squared error than a second one, clients with different

goals or preferences may disagree on which of the two techniques is “best” – or at least,

which one is best for them. Here we examine the process of forecast evaluation from the

point of view of serving clients who have a need or a use for such information in making

some upcoming decision. Each such situation will generate its own loss function, which

is called a decision-based loss function.

Although it serves as a sufficient construct for forecast evaluation, a decision-based

loss function is not simply a direct representation of the decision maker’s underly-



88 C.W.J. Granger and M.J. Machina

ing preferences. A decision maker’s ultimate goal is not to achieve “zero loss”, but

rather, to achieve maximum utility or payoff (or expected utility or expected payoff).

Furthermore, decision-based loss functions are not derived from preferences alone:

Any decision problem that involves maximizing utility or payoff (or its expectation)

is subject to certain opportunities or constraints, and the nature and extent of these

opportunities or constraints will also be reflected in its implied decision-based loss func-

tion.

The goal here is to provide a systematic examination of the relationship between

decision problems and their associated loss functions. We ask general questions, such

as “Can every statistical loss function be derived from some well-specified decision

problem?” or “How big is the family of decision problems that generate a given loss

function?” We can also ask more specific questions, such as “What does the use of

squared-error loss reveal or imply about a decision maker’s underlying decision prob-

lem (i.e. their preferences and/or constraints)?” In addressing such questions, we hope

to develop a better understanding of the use of loss functions as tools in forecast evalu-

ation and parameter estimation.

The following analysis is based Pesaran and Skouras (2002) and Machina and

Granger (2005). Section 2.2 lays out a framework and derives some of the basic cat-

egories and properties of decision-based loss functions. Section 2.3 treats the reverse

question of deriving the family of underlying decision problems that generate a given

loss function, as well as the restrictions on preferences that are implicitly imposed by

the selection of specific functional forms, such as squared-error loss or error-based loss.

Given that these restrictions turn out to be stronger than we would typically choose

to impose, Section 2.4 describes a more general, “location-dependent” approach to the

analysis of general loss functions, which preserves most of the intuition of the standard

cases. Section 2.5 examines the above types of questions when we replace point fore-

casts of an uncertain variable with distribution forecasts. Potentially one can extend the

approach to partial distribution forecasts such as moment or quantile forecasts, but these

topics are not considered here.

2.2. Framework and basic analysis

2.2.1. Decision problems, forecasts and decision-based loss functions

A decision maker would only have a material interest in forecasts of some uncertain

variable x if such information led to “planning benefits” – that is, if their optimal choice

in some intermediate decision might depend upon this information. To represent this, we

assume the decision maker has an objective function (either a utility or a profit function)

U(x, α) that depends upon the realized value of x (assumed to lie in some closed interval

X ⊂ R1), as well as upon some choice variable α to be selected out of some closed

interval A ⊂ R1 after the forecast is learned, but before x is realized. We thus define a

decision problem to consist of the following components:



Ch. 2: Forecasting and Decision Theory 89

uncertain variable x ∈ X ,

(4)choice variable and choice set α ∈ A,

objective function U(·, ·) :X × A → R1.

Forecasts of x can take several forms. A forecast consisting of a single value

xF ∈ X is termed a point forecast. For such forecasts, the decision maker’s optimal
action function α(·) is given by

(5)α(xF ) ≡ arg max
α∈A

U(xF , α) all xF ∈ X .

The objective function U(·, ·) can be measured in either utils or dollars. When U(·, ·)
is posited exogenously (as opposed from being derived from a loss function as in Theo-

rem 1), we assume it is such that (5) has interior solutions α(xF ), and also that it satisfies

the following conditions on its second and cross-partial derivatives, which ensure that

α(xF ) is unique and is increasing in xF :

(6)Uαα(x, α) < 0, Uxα(x, α) > 0 all x ∈ X , all α ∈ A.

Forecasts are invariably subject to error. Intuitively, the “loss” arising from a forecast

value of xF , when x turns out to have a realized value of xR , is simply the loss in

utility or profit due to the imperfect prediction, or in other words, the amount by which

utility or profit falls short of what it would have been if the decision maker had instead

possessed “perfect information” and been able to exactly foresee the realized value xR .

Accordingly, we define the point-forecast/point-realization loss function induced by the

decision problem (4) by

(7)L(xR, xF ) ≡ U
(
xR, α(xR)

) − U
(
xR, α(xF )

)
all xR, xF ∈ X .

Note that in defining the loss arising from the imperfection of forecasts, the realized

utility or profit level U(xR, α(xF )) is compared with what it would have been if the fore-
cast had instead been equal to the realized value (that is, compared with U(xR, α(xR))),

and not with what utility or profit would have been if the realization had instead been
equal to the forecast (that is, compared with U(xF , α(xF ))). For example, given that a

firm faces a realized output price of xR , it would have been best if it had had this same

value as its forecast, and we measure loss relative to this counterfactual. But given that

it received and planned on the basis of a price forecast of xF , it is not best that the real-

ized price also come in at xF , since any higher realized output price would lead to still
higher profits. Thus, there is no reason why L(xR, xF ) should necessarily be symmetric

(or skew-symmetric) in xR and xF . Under our assumptions, the loss function L(xR, xF )

from (7) satisfies the following properties:

L(xR, xF ) � 0, L(xR, xF )|xR=xF = 0,

(8)L(xR, xF ) is increasing in xF for all xF > xR,

L(xR, xF ) is decreasing in xF for all xF < xR.
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As noted, forecasts of x can take several forms. Whereas a point forecast xF conveys

information on the general “location” of x, it conveys no information as to x’s potential

variability. On the other hand, forecasters who seek to formally communicate their own

extent of uncertainty, or alternatively, who seek to communicate their knowledge of

the stochastic mechanism that generates x, would report a distribution forecast FF (·)
consisting of a cumulative distribution function over the interval X . A decision maker

receiving a distribution forecast, and who seeks to maximize expected utility or expected

profits, would have an optimal action function α(·) defined by

(9)α(FF ) ≡ arg max
α∈A

∫
U(x, α) dFF (x) all FF (·) over X

and a distribution-forecast/point-realization loss function defined by

(10)L(xR, FF ) ≡ U
(
xR, α(xR)

) − U
(
xR, α(FF )

)
all x ∈ X , all FF (·) over X .

Under our previous assumptions on U(·, ·), each distribution forecast FF (·) has a

unique point-forecast equivalent xF (FF ) that satisfies α(xF (FF )) = α(FF ) [e.g., Pratt,

Raiffa and Schaifer (1995, 24.4.2)]. Since the point-forecast equivalent xF (FF ) gener-

ates the same optimal action as the distribution forecast FF (·), it will lead to the same

loss, so that we have L(xR, xF (FF )) ≡ L(xR, FF ) for all xR ∈ X and all distributions

FF (·) over X .

Under our assumptions, the loss function L(xR, FF ) from (10) satisfies the follow-

ing properties, where “increasing or decreasing in FF (·)” is with respect to first order

stochastically dominating changes in FF (·):
L(xR, FF ) � 0, L(xR, FF )|xR=xF (FF ) = 0,

(11)L(xR, FF ) is increasing in FF (·) for all FF (·) such that xF (FF ) > xR,

L(xR, FF ) is decreasing in FF (·) for all FF (·) such that xF (FF ) < xR.

It should be noted that throughout, these loss functions are quite general in form, and

are not being constrained to any specific class.

2.2.2. Derivatives of decision-based loss functions

For point forecasts, the optimal action function α(·) from (5) satisfies the first-order

conditions

(12)Uα

(
x, α(x)

) ≡
x

0.

Differentiating this identity with respect to x yields

(13)α′(x) ≡ −Uxα(x, α(x))

Uαα(x, α(x))
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and hence

α′′(x) ≡ −Uxxα(x, α(x)) · Uαα(x, α(x)) − Uxα(x, α(x)) · Uxαα(x, α(x))

Uαα(x, α(x))2

− Uxαα(x, α(x)) · Uαα(x, α(x)) − Uxα(x, α(x)) · Uααα(x, α(x))

Uαα(x, α(x))2
· α′(x)

≡ −Uxxα(x, α(x))

Uαα(x, α(x))
+ 2 · Uxα(x, α(x)) · Uxαα(x, α(x))

Uαα(x, α(x))2

(14)− Uxα(x, α(x))2 · Uααα(x, α(x))

Uαα(x, α(x))3 .

By (7) and (12), the derivative of L(xR, xF ) with respect to small departures from a

perfect forecast is

(15)
∂L(xR, xF )

∂xF

∣∣∣∣
xF =xR

≡ −Uα

(
xR, α(xF )

)∣∣
xF =xR

· α′(xF )
∣∣
xF =xR

≡ 0.

Calculating L(xR, xF )’s derivatives at general values of xR and xF yields

∂L(xR, xF )

∂xR

≡ Ux

(
xR, α(xR)

) + Uα

(
xR, α(xR)

) · α′(xR) − Ux

(
xR, α(xF )

)
,

∂L(xR, xF )

∂xF

≡ −Uα

(
xR, α(xF )

) · α′(xF ),

(16)

∂2L(xR, xF )

∂x2
R

≡ Uxx

(
xR, α(xR)

) + Uxα

(
xR, α(xR)

) · α′(xR)

+ Uxα

(
xR, α(xR)

) · α′(xR) + Uαα

(
xR, α(xR)

) · α′(xR)2

+ Uα

(
xR, α(xR)

) · α′′(xR) − Uxx

(
xR, α(xF )

)
,

∂2L(xR, xF )

∂xR∂xF

≡ −Uxα

(
xR, α(xF )

) · α′(xF ),

∂2L(xR, xF )

∂x2
F

≡ −Uαα

(
xR, α(xF )

) · α′(xF )2 − Uα

(
xR, α(xF )

) · α′′(xF ).

2.2.3. Inessential transformations of a decision problem

One can potentially learn a lot about decision problems or families of decision problems

by asking what changes can be made to them without altering certain features of their

solution. This section presents a relevant application of this approach.

A transformation of any decision problem (4) is said to be inessential if it does not

change its implied loss function, even though it may change other attributes, such as the

formula for its optimal action function or the formula for its ex post payoff or utility. For

point-forecast loss functions L(·, ·), there exist two types of inessential transformations:
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Inessential relabelings of the choice variable: Given a decision problem with objec-

tive function U(·, ·) :X × A → R1, any one-to-one mapping ϕ(·) from A into an

arbitrary space B will generate what we term an inessential relabeling β = ϕ(α) of

the choice variable, with objective function U ∗(·, ·) :X × B∗ → R1 and choice set

B∗ ⊆ B defined by

(17)U∗(x, β) ≡ U
(
x, ϕ−1(β)

)
, B∗ = ϕ(A) = {

ϕ(α) | α ∈ A}
.

The optimal action function β(·) :X → B∗ for this transformed decision problem is

related to that of the original problem by

β(xF ) ≡ arg max
β∈B∗

U∗(xF , β) ≡ arg max
β∈B∗

U
(
x, ϕ−1(β)

)

(18)≡ ϕ
(
arg max

α∈A
U(xF , α)

) ≡ ϕ
(
α(xF )

)
.

The loss function for the transformed problem is the same as for the original problem,

since

L∗(xR, xF ) ≡ U∗(xR, β(xR)
) − U∗(xR, β(xF )

)
≡ U

(
xR, ϕ−1(β(xR)

)) − U
(
xR, ϕ−1(β(xF )

))
(19)≡ U

(
xR, α(xR)

) − U
(
xR, α(xF )

) ≡ L(xR, xF ).

While any one-to-one mapping ϕ(·) will generate an inessential transformation of

the original decision problem, there is a unique “most natural” such transformation,

namely the one generated by the mapping ϕ(·) = α−1(·), which relabels each choice

α with the forecast value xF that would have led to that choice – we refer to this

labeling as the forecast-equivalent labeling of the choice variable. Technically, the

map α−1(·) is not defined over the entire space A, but just over the subset {α(x) |
x ∈ X } ⊆ A of actions that are optimal for some x. However, that suffices for

the following decision problem to be considered an inessential transformation of the

original decision problem:

(20)Û(x, xF ) ≡
x,xF

U
(
x, α(xF )

)
, B̂ = ϕ(A) = {

ϕ(α) | α ∈ A}
.

We refer to (20) as the canonical form of the original decision problem, note that its

optimal action function is given by α̂(xF ) ≡ xF , and observe that Û(x, xF ) can be

interpreted as the formula for the amount of ex post utility (or profit) resulting from

a realized value of x when the decision maker had optimally responded to a point

forecast of xF .

Inessential transformations of the objective function: A second type of inessential

transformation consists of adding an arbitrary function ξ(·) :X → R1 to the origi-

nal objective function, to obtain a new function U ∗∗(x, α) ≡ U(x, α) + ξ(x). Since

Uα(xF , α) ≡ U∗∗
α (xF , α), the first order condition (12) is unchanged, so the opti-

mal action functions α∗∗(·) and α(·) for the two problems are identical. But since

the ex post utility levels for the two problems are related by U ∗∗(x, α∗∗(xF )) ≡
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U(x, α(xF )) + ξ(x), their canonical forms are related by Û∗∗(x, xF ) ≡ Û(x, xF ) +
ξ(x) and B̂ = A, which would, for example, allow Û∗∗(x, xF ) to be increasing in x

when Û(x, xF ) was decreasing in x, or vice versa. However, the loss functions for

the two problems will be identical, since:

L∗∗(xR, xF ) ≡ U∗∗(xR, α∗∗(xR)
) − U∗∗(xR, α∗∗(xF )

)
(21)≡ U

(
xR, α(xR)

) − U
(
xR, α(xF )

) ≡ L(xR, xF ).

Theorem 1 below will imply that these two forms, namely inessential relabelings of

the choice variable and inessential additive transformations of the objective function,

exhaust the class of loss-function-preserving transformations of a decision problem.

2.3. Recovery of decision problems from loss functions

In practice, loss functions are typically not derived from an underlying decision problem

as in the previous section, but rather, are postulated exogenously. But since we have seen

that decision-based loss functions inherit certain necessary properties, it is worth asking

precisely when a given loss function (or functional form) can or cannot be viewed as

being derived from an underlying decision problem. In cases when they can, it is then

worth asking about the restrictions this loss function or functional form implies about

the underlying utility or profit function or constraints.

2.3.1. Recovery from point-forecast loss functions

Machina and Granger (2005) demonstrate that for an arbitrary point-forecast/point-

realization loss function L(·, ·) satisfying (8), the class of objective functions that

generate L(·, ·) has the following specification:

THEOREM 1. For arbitrary function L(·, ·) that satisfies the properties (8), an objective
function U(·, ·) :X ×A → R1 with strictly monotonic optimal action function α(·) will
generate L(·, ·) as its loss function if and only if it takes the form

(22)U(x, α) ≡ f (x) − L
(
x, g(α)

)
for some function f (·) :X → R1 and monotonic function g(·) :A → X .

This theorem states that an objective function U(x, α) and choice space A are con-

sistent with the loss function L(xR, xF ) if and only if they can be obtained from the

function −L(xR, xF ) by one or both of the two types of inessential transformations

described in the previous section. This result serves to highlight the close, though not

unique, relationship between decision makers’ loss functions and their underlying deci-

sion problems.

To derive the canonical form of the objective function (22) for given choice of f (·)
and g(·), recall that each loss function L(xR, xF ) is minimized with respect to xF when
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xF is set equal to xR, so that the optimal action function for the objective function (22)

takes the form α(x) ≡ g−1(x). This in turn implies that its canonical form Û(x, xF ) is

given by

(23)Û(x, xF ) ≡ U
(
x, α(xF )

) ≡ f (x) − L
(
x, g

(
α(xF )

)) ≡ f (x) − L(x, xF ).

2.3.2. Implications of squared-error loss

The most frequently used loss function in statistics is unquestionably the squared-error
form

(24)LSq(xR, xF ) ≡ k · (xR − xF )2, k > 0,

which is seen to satisfy the properties (8). Theorem 1 thus implies the following result:

COROLLARY 1. For arbitrary squared-error function LSq(xR, xF ) ≡ k · (xR − xF )2

with k > 0, an objective function U(·, ·) :X ×A → R1 with strictly monotonic optimal
action function α(·) will generate LSq(·, ·) as its loss function if and only if it takes the
form

(25)U(x, α) ≡ f (x) − k · (
x − g(α)

)2

for some function f (·) :X → R1 and monotonic function g(·) :A → X .

Since utility or profit functions of the form (25) are not particularly standard, it is

worth describing some of their properties. One property, which may or may not be

realistic for a decision setting, is that changes in the level of the choice variable α do

not affect the curvature (i.e. the second and higher order derivatives) of U(x, α) with

respect to x, but only lead to uniform changes in the level and slope with respect to x –

that is to say, for any pair of values α1, α2 ∈ A, the difference U(x, α1) − U(x, α2) is

an affine function of x.1

A more direct property of the form (25) is revealed by adopting the forecast-

equivalent labeling of the choice variable to obtain its canonical form Û(x, xF ) from

(20), which as we have seen, specifies the level of utility or profit resulting from an

actual realized value of x and the action that would have been optimal for a realized

value of xF . Under this labeling, the objective function implied by the squared-error

loss function LSq(xR, xF ) is seen (by (23)) to take the form

(26)Û(x, xF ) ≡ f (x) − LSq(x, xF ) ≡ f (x) − k · (x − xF )2.

In terms of our earlier example, this states that when a firm faces a realized output

price of x, its shortfall from optimal profits due to having planned for an output price

of xF only depends upon the difference between x and xF (and in particular, upon the

1 Specifically, (25) implies U(x, α1) − U(x, α2) ≡ −k · [g(α1)
2 − g(α2)

2] + 2 · k · [g(α1) − g(α2)] · x.
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Figure 1. Level curves of a general loss function L(xR, xF ) and the band |xR − xF | � ε.

square of this difference), and not upon how high or how low the two values might both

be. Thus, the profit shortfall from having underpredicted a realized output price of $10

by one dollar is the same as the profit shortfall from having underpredicted a realized

output price of $2 by one dollar. This is clearly unrealistic in any decision problem

which exhibits “wealth effects” or “location effects” in the uncertain variable, such as

a firm which could make money if the realized output price was $7 (so there would be

a definite loss in profits from having underpredicted the price by $1), but would want

to shut down if the realized output price was only $4 (in which case there would be no

profit loss at all from having underpredicted the price by $1).

2.3.3. Are squared-error loss functions appropriate as “local approximations”?

One argument for the squared-error form LSq(xR, xF ) ≡ k · (xR − xF )2 is that if the

forecast errors xR − xF are not too big – that is, if the forecaster is good enough at

prediction – then this functional form is the natural second-order approximation to any

smooth loss function that exhibits the necessary properties of being zero when xR = xF

(from (8)) and having zero first-order effect for small departures from a perfect forecast

(from (15)).

However, the fact that xR − xF may always be close to zero does not legitimize

the use of the functional form k · (xR − xF )2 as a second-order approximation to a
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general smooth bivariate loss function L(xR, xF ), even one that satisfies L(0, 0) = 0

and ∂L(xR, xF )/∂xF |xR=xF = 0. Consider Figure 1, which illustrates the level curves

of some smooth loss function L(xR, xF ), along with the region where |xR − xF | is less

than or equal to some small value ε, which is seen to constitute a constant-width band

about the 45◦ line. This region does not constitute a small neighborhood in R2, even as

ε → 0. In particular, the second order approximation to L(xR, xF ) when xR and xF are

both small and approximately equal to each other is not the same as the second-order

approximation to L(xR, xF ) when xR and xF are both large and approximately equal

to each other. Legitimate second-order approximations to L(xR, xF ) can only be taken

in over small neighborhoods of points in R2, and not over bands (even narrow bands)

about the 45◦ line. The “quadratic approximation” LSq(xR, xF ) ≡ k · (xR − xF )2 over

such bands is not justified by Taylor’s theorem.

2.3.4. Implications of error-based loss

By the year 2000, virtually all stated loss functions were of the form (27) – that is, a

single-argument function of the forecast error xR −xF which satisfies the properties (8):

(27)Lerr(xR, xF ) ≡ H(xR − xF ), H(·) � 0,H(0) = 0,H(·) quasiconcave.

Consider what Theorem 1 implies about this general error-based form:

COROLLARY 2. For arbitrary error-based function Lerr(xR, xF ) ≡ H(xR − xF ) satis-
fying (27), an objective function U(·, ·) :X × A → R1 with strictly monotonic optimal
action function α(·) will generate Lerr(·, ·) as its loss function if and only if it takes the
form

(28)U(x, α) ≡ f (x) − H
(
x − g(α)

)
for some function f (·) :X → R1 and monotonic function g(·) :A → X .

Formula (28) highlights the fact that the use of an error-based loss function of the

form (27) implicitly assumes that the decision maker’s underlying problem is again

“location-independent”, in the sense that the utility loss from having made an ex post

nonoptimal choice α �= g−1(xR) only depends upon the difference between the values

xR and g(α), and not their general levels, so that it is again subject to the remarks

following Equation (26). This location-independence is even more starkly illustrated in

formula (28)’s canonical form, namely Û(x, xF ) ≡ f (x) − H(x − xF ).

2.4. Location-dependent loss functions

Given a loss function L(xR, xF ) which is location-dependent and hence does not take

the form (27), we can nevertheless retain most of our error-based intuition by defining

e = xR − xF and defining L(xR, xF )’s associated location-dependent error-based form
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by

(29)H(xR, e) ≡ L(xR, xR − e)

which implies

(30)L(xR, xF ) ≡ H(xR, xR − xF ).

In this case Theorem 1 implies that the utility function (22) takes the form

(31)U(x, α) ≡ f (x) − H
(
x, x − g(α)

)
for some f (·) and monotonic g(·). This is seen to be a generalization of Corollary 2,

where the error-based function H(x − g(α)) is replaced by a location-dependent form

H(x, x−g(α)). Such a function, with canonical form Û (x, xF ) ≡ f (x)−H(x, x−xF),

would be appropriate when the decision maker’s sensitivity to a unit error was different

for prediction errors about high values of the variable x than for prediction errors about

low values of this variable.

2.5. Distribution-forecast and distribution-realization loss functions

Although the traditional form of forecast used was the point forecast, there has recently

been considerable interest in the use of distribution forecasts. As motivation, consider

“forecasting” the number that will come up on a biased (i.e. “loaded”) die. There is little

point to giving a scalar point forecast – rather, since there will be irreducible uncertainty,

the forecaster is better off studying the die (e.g., rolling it many times) and reporting the

six face probabilities. We refer to such a forecast as a distribution forecast. The decision

maker bases their optimal action upon the distribution forecast FF (·) by solving the first

order condition

(32)

∫
Uα(x, α) dFF (x) = 0

to obtain the optimal action function

(33)α(FF ) ≡ arg max
α∈A

∫
U(x, α) dFF (x).

For the case of a distribution forecast FF (·), the reduced-form payoff function takes

the form

(34)R(xR, FF ) ≡ U
(
xR, arg max

α∈A

∫
U(x, α) dFF (x)

)
≡ U

(
xR, α(FF )

)
.

Recall that the point-forecast equivalent is defined as the value xF (FF ) that satisfies

(35)α
(
xF (FF )

) = α(FF )
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and in the case of a single realization xR , the distribution-forecast/point-realization loss
function is given by

(36)L(xR, FF ) ≡ U
(
xR, α(xR)

) − U
(
xR, α(FF )

)
.

In the case of T successive throws of the same loaded die, there is a sense in which the

“best case scenario” is when the forecaster has correctly predicted each of the succes-

sive realized values xR1, . . . , xRT . However, when it is taken as given that the successive

throws are independent, and when the forecaster is restricted to offering a single distri-

bution forecast FF (·) which must be provided prior to any of the throws, then the “best

case” distribution forecast is the one that turns out to match the empirical distribution

FR(·) of the sequence of realizations, which we can call its “histogram”. We thus define

the distribution-forecast/distribution-realization loss function by

(37)L(FR, FF ) ≡
∫

U
(
x, α(FR)

)
dFR(x) −

∫
U

(
x, α(FF )

)
dFR(x)

and observe that much of the above point-realization based analysis can be extended to

such functions.
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